

1 **Noble gas and nitrogen investigation of the unique andesitic achondrite Erg Chech 002: Dega**
2 **ssing, cosmic ray exposure and radiogenic ingrowth histories**

3 D. J. Byrne^{1*}, M. W. Broadley², E. Füri³, L. Tissandier³, L. Zimmermann³, M. G. Almayrac², D. V. Bekaert³, J. A.
4 Barrat⁴ and B. Marty³

5 ¹Wairakei Research Centre, GNS Science, Taupō 3384, New Zealand

6 * Corresponding author email: d.byrne@gns.cri.nz

7 ²Department of Earth and Environmental Science, University of Manchester, UK

8 ³ Université de Lorraine, CNRS, CRPG, Nancy, France

9 ⁴ Univ Brest, CNRS, IRD, Ifremer, LEMAR, F-29280 Plouzané, France

10

11 **For submission to GCA**

12 Number of Words = 7,122

13 Number of Figures = 9

14 Number of Tables = 5

15 14th of October, 2024

16

17 **Abstract = 494 words**

18 Erg Chech 002 (EC 002) is a unique achondrite that represents a fragment of the igneous crust of an
19 extinct protoplanet that accreted within the first million years of solar system evolution (Barrat et al., 2021).
20 Assessing the extent of volatile depletion in EC 002 has the potential to provide information regarding volatile
21 loss processes during formation of the earliest differentiated planetary bodies in the solar system. In order to
22 determine the amounts of trapped “planetary” noble gas components that have been preserved in EC 002 during
23 formation of its parent body and evaluate the extent of degassing of the EC 002 parent body, we present a
24 comprehensive noble gas and nitrogen isotope analysis of EC 002 using several different extraction techniques.
25 Bulk noble gas composition, determined through step heating, reveals strongly cosmogenic He and Ne isotopes
26 ($^{3}\text{He}/^{4}\text{He} = 0.00731 \pm 0.00007$; $^{20}\text{Ne}/^{22}\text{Ne} = 0.768 \pm 0.002$; $^{21}\text{Ne}/^{22}\text{Ne} = 0.846 \pm 0.015$), cosmogenic enrichments
27 in $^{38}\text{Ar}/^{36}\text{Ar}$, and Kr and Xe isotopic spectra, as well as a strong enrichment in radiogenic ^{40}Ar ($^{40}\text{Ar}/^{36}\text{Ar} = 5523 \pm$
28 42). Individual temperature step extractions show preferential release of radiogenic ^{40}Ar and cosmogenic ^{21}Ne
29 at lower temperature steps, both indicative of selective release from the K, Na-rich plagioclase phases. Laser
30 ablation analyses of individual grains confirm this heterogeneous noble gas distribution, and show that the vast

31 majority of He and Ne is hosted in the pyroxene grains. Substantial loss of cosmogenic He and Ne from the
32 plagioclase phases via diffusion, even at low temperatures, is required to explain this observation. Conversely,
33 radiogenic ^{40}Ar is strongly concentrated in the plagioclase phases, corroborating step-heating observations.
34 Further evidence of He loss is demonstrated by the discordant (U-Th)/He age of 2700 Myr, yet the K-Ar age of
35 4530^{+12}_{-13} Myr is in agreement with the reported ^{26}Al - ^{26}Mg formation age, precluding significant thermal events
36 occurring long after the formation of EC 002. Cosmogenic ^{38}Ar and ^{21}Ne abundances in individual pyroxene grains
37 yield a cosmic ray exposure age range of 27 - 41 Myr, with a preferred age of 35 Myr. Step-crushing data show
38 excesses in fissionogenic heavy Xe isotopes, with a fissionogenic spectrum most compatible with U fission as opposed
39 to Pu. Trapped "primordial" noble gas abundances are difficult to distinguish from the high cosmogenic and
40 radiogenic contributions, but are at least an order of magnitude lower than typical non-carbonaceous chondrites
41 that EC 002 is thought to be derived from, suggesting relatively extensive degassing. Bulk nitrogen isotope ratio
42 ($\delta^{15}\text{N} = +15.0 \pm 0.5 \text{ ‰}$) is within the range expected for ordinary chondrites (OC) and distinct from the other
43 possible non-carbonaceous chondrite class, the enstatite chondrites. The bulk $^{36}\text{Ar}/\text{N}$ ratio is lower than typical
44 OC values, although it is consistent with fractionation during degassing of a parent body with an initially OC-like
45 composition. Overall this constrains the origin of the volatile inventory of the EC 002 parent body, and provides
46 evidence for degassing processes occurring on planetary bodies at the earliest stages of solar system history.

47

48 **1. Introduction**

49 Discovered in Algeria in the spring of 2020, Erg Chech 002 (EC 002) is a unique meteorite that represents
50 part of the primordial igneous crust of an extinct protoplanet (Barrat et al., 2021). It is a remnant of a
51 differentiated planetary body from the early solar system, which were likely important building blocks for the
52 terrestrial planets. EC 002 consists primarily of ~mm size pyroxene grains (38 modal %) enclosed by a
53 groundmass of plagioclase feldspar (45 modal %) and interstitial silica minerals (5 modal %), with minor
54 contributions from accessory minerals including chromite, ilmenite, sulfide and iron metal (Barrat et al., 2021).
55 It also displays sporadic pyroxene megacrysts up to several cm in size, and its texture suggests crystallisation
56 within a thick flow or in a shallow intrusion, with a relatively short cooling history (Barrat et al., 2021). Whilst EC
57 002 does share some compositional similarities with other high-Si achondrites such as GRA 06128/9 and NWA
58 11119 (Day et al., 2009; Srinivasan et al., 2018), it differs in its low and highly fractionated siderophile element
59 abundances, clearly demonstrating that unlike these previously studied andesitic achondrites, it derives from a
60 differentiated parent body. Incompatible trace element abundances indicate that this lava derives from the
61 partial melting of a non-carbonaceous chondritic reservoir, at a high degree of melting of around 25%
62 (Chaussidon et al., 2021).

63 With a ^{26}Al - ^{26}Mg crystallization age of 4565 Myr (i.e. 1.80 ± 0.01 Myr after the formation of CAI's, the
64 oldest known solar system materials), EC 002 represents the oldest felsic magmatic rock identified to date (Fang
65 et al., 2022). Several other radioisotope dating techniques have since produced consistent results, including
66 ^{53}Mn - ^{53}Cr (Anand et al., 2022), ^{40}K - ^{40}Ca (Dai et al., 2023), and Ar-Ar (Takenouchi et al., 2021). Differentiation of

67 the EC 002 parent body might have taken place significantly before, possibly during the first Myr after start of
68 solar system formation. Protoplanets covered by andesitic crusts were probably frequent, but no asteroid shares
69 the spectral features of EC 002 (Barrat et al., 2021), suggesting that almost all of these bodies have disappeared,
70 either because they went on to form the building blocks of larger bodies or planets or were simply destroyed.

71 EC 002 offers a rare window into understanding early planetary formation processes,
72 contemporaneous with the formation of the cores of the parent bodies of iron meteorites (Kruijer et al., 2014;
73 Spitzer et al., 2021). In particular, it may provide an opportunity to investigate the behavior of highly volatile
74 elements such as noble gases during differentiation of a primitive body. Noble gas isotopes are a powerful tool
75 for investigating a number of cosmochemical processes, including volatile provenance (Bekaert et al., 2019),
76 planetary degassing, volatile radiogenic isotope retention, and cosmic ray exposure (Leya et al., 2013; Broadley
77 et al., 2020a).

78 One of the key uses of noble gas isotope analyses in meteorites is to investigate the cosmic ray exposure
79 (CRE) age as recorded by the accumulation of cosmogenic isotopes produced by spallation reactions from cosmic
80 rays of either galactic (GCR) or solar (SCR) origin. These ages are typically considered to represent the duration
81 between breakup of a larger parent body and the transit of the meteorite to Earth (Scherer and Schultz, 2000;
82 Meier et al., 2018; Bekaert et al., 2022). In samples from the early solar system they can also be used to infer
83 potential differences in the irradiation conditions of the protosolar nebula (Riebe et al., 2017). The application
84 of cosmogenic noble gas isotope techniques to igneous rocks such as EC 002 however may be complicated due
85 to incomplete retention of light noble gases particularly in silica-rich phases, as well as the potential
86 concentration of non-radiogenic noble gases in vesicles or along grain boundaries. These issues may not be
87 apparent when using conventional bulk sample analysis such as step-heating.

88 Light noble gas isotope data (He, Ne and Ar) obtained using step-heating extraction for EC 002 was
89 previously reported in Barrat et al. (2021) and used to determine cosmogenic exposure age and for radiogenic
90 Ar analysis. In this manuscript we present a comprehensive noble gas and nitrogen isotope analysis of EC 002
91 (He, Ne, Ar, Kr, Xe), using three separate extraction techniques for noble gas analysis: step heating, crushing,
92 and laser ablation, with nitrogen analysis extraction by laser heating. The results of these analyses reveal some
93 intricacies in the cosmogenic noble gas isotope composition of EC 002 that was not apparent in the step-heating
94 data reported by Barrat et al. (2021) and prompts a re-evaluation of the cosmic ray exposure history of the
95 sample. We also investigate the radiogenic isotope composition of the different mineral phases present within
96 EC 002, and discuss the primordial volatile signature and degassing history.

97 **2. Methodology**

98 **2.1 Extraction**

99 Three extraction techniques were used for noble gas analysis. These provide complementary
100 information regarding the distribution of noble gases within EC 002, as well as the production and retention/loss
101 of radiogenic and cosmogenic isotopes from different mineral phases. Step heating extractions provide a precise

102 determination of bulk noble gas composition, and individual heating steps can be associated with different
103 mineral phases, due to their differing thermal sensitivity to diffusive loss (Futagami et al., 1993). Crushing
104 analyses are used to identify the composition of noble gases situated within inclusions and along grain
105 boundaries. In-situ laser ablation analyses can be used to target individual mineral grains within the sample, and
106 can be combined with SEM analysis regarding the target material's chemical composition.

107 *2.1.1 Step-heating*

108 Step heating analysis was performed using a filament furnace, with samples heated directly in alumina-
109 coated tungsten evaporation baskets (Ted Pella Inc.). All baskets were degassed under vacuum at 1600°C for 10
110 minutes prior to use. A sample fragment of mass 8.3 mg was loaded into one basket, with an additional empty
111 basket used to determine blanks at each temperature step. Prior to analysis the entire furnace including samples
112 and blanks was baked under vacuum at 150°C for 24 hours to remove atmospheric contributions. Sample gas
113 was released by passing a current through the basket, following a previously determined temperature
114 calibration (Bekaert et al., 2018; Broadley et al., 2020b). Extractions were performed at temperature intervals
115 of 200°C between 600°C and 1400°C, at which point the sample was observed to have melted. An additional re-
116 extraction at 1600°C was undertaken to confirm that all gas had been released.

117 *2.1.2 Crushing*

118 Crushing analysis was performed using a custom-built stainless steel piston crusher, with pressure
119 applied using a hydraulic ram. A sample mass of 185.2 mg was loaded into the crusher. Prior to analysis the
120 crushing apparatus including sample was baked under vacuum at 150°C for 24 hours and subsequently pumped
121 for a further 48 hours until blanks were low and reproducible. Gas was then released from the sample during
122 crushing step 1 by applying pressure until audible cracking was heard. Subsequent crushing steps were
123 performed by sequentially increasing the pressure for a total of 4 step crushes.

124 *2.1.3 Laser Ablation*

125 Laser ablation analysis was performed using a Nd:YAG 213 nm laser (Elemental Scientific NWR213). A
126 polished thick section of sample was loaded into a windowed ultra-high vacuum chamber and baked at 150°C
127 for 24 hours. The sample chamber was then pumped for a further 48 hours until blanks were low and
128 reproducible. Ablations were performed using a laser fluence of 12 Jcm⁻² and spot diameter of 110 µm. Each
129 ablation consisted of 200 pulses at a repetition rate of 10 Hz. For each analysis an array of between 8 to 20 spots
130 were ablated in order to provide sufficient gas for measurement. Five analyses were targeted within individual
131 pyroxene grains (labelled Px1-5), whilst a single additional analysis was targeted within the plagioclase-
132 dominated groundmass (Plag1). After the analyses were completed, the sample was removed from the chamber
133 and the ablation volumes were calculated using an optical interferometer (Zygo ZeGage ProHR). Average
134 ablation depth was ~20 µm, resulting in a typical ablated mass of ~1µg per spot. Bulk chemical compositions of
135 the individual minerals analysed were also determined after noble gas analysis, using the Jeol-JSM 6510 scanning
136 electron microscope (SEM) coupled with an energy dispersive X-ray spectroscopy (EDS) system, located at CRPG.

137 The EDS XFlash 5030 detector from Bruker is running with the Esprit 2.2 software. The spectra were acquired
138 with a 15kV acceleration voltage and virtual controls were used for the element quantifications.

139 **2.2 Purification**

140 Sample gas extracted using step heating and laser ablation techniques was passed through a
141 preliminary purification stage using an inline Ti-sponge getter operated at 650°C for 10 minutes. This step was
142 bypassed for the crushing analyses in order to exclude the higher blanks associated with this hot getter. The
143 subsequent analytical procedure is the same for each extraction technique. Firstly the sample gas was exposed
144 to dual Ti-Sponge getters held at 550°C for 10 minutes. An activated carbon cold finger cooled using liquid
145 nitrogen was then used to trap Ar, Kr and Xe, before the remaining He and Ne were trapped onto a activated
146 charcoal cryogenic trap held at ~10 K.

147 The noble gases were then sequentially released before being inlet into the mass spectrometer for
148 analysis. A final purification stage consisting of dual Ti-sponge getters at room temperature was also applied
149 here to remove any remaining reactive gases. Helium was released from the cryogenic trap at 34K, and neon
150 was subsequently released at 90K. For step heating and crushing analyses, Ar, Kr and Xe were released
151 simultaneously from the activated carbon cold finger before Kr and Xe were immediately retrapped using a
152 quartz cold finger cooled with liquid nitrogen. For laser ablation analyses insignificant quantities of the heavy
153 noble gases were present and so this step was omitted and Ar simply inlet directly into the mass spec. Finally,
154 Kr and Xe were released from the quartz cold finger at room temperature and inlet for simultaneous
155 measurement.

156 **2.3 Noble gas analysis**

157 All analysis was performed using a Helix MC Plus mass spectrometer (Thermo Fisher Scientific). Helium
158 analysis was performed using peak jumping, with ^4He measured on a Faraday cup and ^3He on a compact discrete
159 dynode (CDD) electron multiplier in pulse counting mode. Neon analysis was performed using multicollection
160 for simultaneous measurement of all 3 isotopes using CDD detectors. An activated carbon cold finger at liquid
161 nitrogen temperature was left open to the spectrometer during Ne measurements in order to minimise
162 interference from $^{12}\text{C}^{16}\text{O}_2^{++}$ on $^{22}\text{Ne}^+$ peaks. CO_2^{++} levels were monitored during analysis and ^{22}Ne signals were
163 subsequently corrected using a calibrated $\text{CO}_2^{++}/\text{CO}_2^+$ ratio. $^{40}\text{Ar}^{++}$ was fully resolved from $^{20}\text{Ne}^+$, and so no
164 correction was required. Ar was measured using a peak jumping procedure with ^{40}Ar measured using a Faraday
165 cup and ^{36}Ar , ^{38}Ar on CDD detectors. Xe and Kr were inlet together and Kr was analysed directly after the Xe
166 measurement was completed. Both Xe and Kr were analysed using a peak jumping procedure with all isotopes
167 measured on CDD detectors (Bekaert et al. 2018; Broadley et al. 2020b).

168 Standards were run daily following the same separation procedure as sample analyses. For this
169 purpose, a high $^3\text{He}/^4\text{He}$ HESJ standard was used (Matsuda et al., 2002), as well as internally calibrated
170 atmospheric combined Ne-Ar and Kr-Xe standards. All uncertainties are 1 sigma. Typical standard reproducibility
171 was 0.36% for $^3\text{He}/^4\text{He}$, 0.58% for $^{20}\text{Ne}/^{22}\text{Ne}$, 0.41% for $^{21}\text{Ne}/^{22}\text{Ne}$, 0.31% for $^{40}\text{Ar}/^{36}\text{Ar}$, and 0.22% for $^{38}\text{Ar}/^{36}\text{Ar}$.

172 Blank contributions were routinely subtracted from all analyses. For laser ablation measurements,
173 blank contributions for ^3He , ^{21}Ne and ^{40}Ar were 6.6×10^{-18} , 2.8×10^{-19} and 2.1×10^{-15} mols respectively. For the five
174 pyroxene analyses this represents a <6% contribution for ^3He and a <2% contribution for ^{21}Ne . Due to the low
175 abundance and high variability of Ar analyses, it represents a range from 5-70% contribution for ^{40}Ar . Conversely,
176 the plagioclase analysis has low contributions for ^{40}Ar (<1%) and ^{21}Ne (<7%), but relatively high blank
177 contribution for ^3He (72%). For the step heating measurements, blanks for each isotope at each temperature
178 step were determined by heating the blank basket to the same temperature steps as the sample. Blank
179 contributions for ^3He and ^{21}Ne were <1%. For ^{40}Ar , blank contributions were higher for the 600°C and 1400°C
180 release steps, due to the relatively low amounts of gas released, giving blank contributions of 27% and 31%
181 respectively. For all other temperature steps the blank contribution to ^{40}Ar was <2%. Blank contributions for
182 step heating analysis of Kr and Xe were significant for the three heating steps at which resolvable signals were
183 obtained, with ^{84}Kr blanks ranging from 1.7×10^{-17} mol to 3.4×10^{-17} mol, and ^{130}Xe ranging from 2.7×10^{-19} mol to
184 3.9×10^{-19} mol. This represents <40% of the sample signal in all cases however. For crushing analyses, blank levels
185 for ^4He , ^{20}Ne , ^{40}Ar , ^{84}Kr and ^{130}Xe were 2.9×10^{-15} mol, 4.7×10^{-17} mol, 1.8×10^{-15} mol, 2.0×10^{-18} mol and 4.0×10^{-20}
186 mol respectively. Respectively this resulted in a maximum blank contribution of 3%, 28%, 0.7%, 9% and 42%.

187 **2.4 Nitrogen analysis**

188 A separate sample fragment (4.955 mg) was used for nitrogen analysis using a Noblesse HR (Nu
189 Instruments) mass spectrometer with a dedicated nitrogen purification line. The sample was mounted in a
190 windowed ultra-high vacuum laser chamber and gas was extracted via heating with a CO₂ laser. Three separate
191 heating steps were performed with increasing laser power until the sample was completely fused. Nitrogen was
192 purified using a CuO furnace following methods outlined in Boulliung et al. (2020). Additionally, neon and argon
193 were measured using a separate aliquot of the extracted gas, following purification methods similar to those
194 outlined in section 2.2. The three isotopologues of N₂ ($^{14}\text{N}^{14}\text{N}$, $^{15}\text{N}^{14}\text{N}$, $^{15}\text{N}^{15}\text{N}$) and the three isotopes of neon
195 ($^{20,21,22}\text{Ne}$) and argon ($^{36,38,40}\text{Ar}$) were analyzed in multi-collection mode (Füri et al., 2021). Blank contributions
196 for N₂ were <2% of measured signals, and standard reproducibility for $\delta^{15}\text{N}$ was 0.5‰.

197 **3. Results**

198 **3.1 Step heating**

199 Step heating isotope and abundance data for He, Ne and Ar were reported in Barrat et al., 2021,
200 although as they are relevant to the following discussion they are reproduced for reference in Tables S1 & S2,
201 and plotted in Fig. 1. The heavy noble gases Kr and Xe were indistinguishable from blank levels at the 600°C and
202 1000°C heating steps. while small but resolvable amounts were detected at the 800°C, 1200°C and 1400°C steps.
203 Bulk ^{84}Kr and ^{132}Xe abundances are $160.8 \pm 3.1 \times 10^{-16}$ mol.g⁻¹ and $23.1 \pm 1.6 \times 10^{-16}$ mol.g⁻¹ respectively. Xe isotope
204 spectra show strong enrichments in cosmogenic ^{124}Xe and ^{126}Xe , up to five times the atmospheric value (Fig. 3).
205 Kr isotope spectra also show cosmogenic enrichments in light isotopes, particularly at the 1200°C extraction step

206 with $^{78}\text{Kr}/^{84}\text{Kr} \sim 2.5$ x the atmospheric value (Fig. 4). Excesses of ^{134}Xe and ^{136}Xe were observed, which will be
207 described in section 4.1.3.

208 **3.2 Crushing**

209 Crushing data for light noble gases released at each of the 4 crushing steps are shown in Fig. 5 and
210 reported in Tables 1 & 2. The largest release of gas was recorded in crushing step 2. The noble gas isotope
211 compositions released during each crushing step are constrained to relatively narrow ranges, unlike step
212 heating. This extraction technique is mechanical in nature and so not affected by thermal diffusion or mineral
213 degradation.

214 The observed isotope ratios of the gas released during crushing are closer to terrestrial atmosphere
215 values than those released during step heating, which may reflect a proportionally greater contribution of
216 adsorbed atmosphere. Nonetheless, $^3\text{He}/^4\text{He}$ ratios up to 0.00342 ± 0.00006 are indicative of strong cosmogenic
217 ^3He contributions, with a bulk value of 0.00331 ± 0.00006 . Similarly, Ne isotopes are similar to expected
218 cosmogenic production ratios, with a bulk $^{20}\text{Ne}/^{22}\text{Ne}$ of 0.866 ± 0.007 and $^{21}\text{Ne}/^{22}\text{Ne}$ of 0.692 ± 0.009 . Fig. 2
219 shows that these ratios fall closer to expected cosmogenic production in a pure plagioclase phase than to the
220 bulk composition, suggesting that the crushing is preferentially releasing plagioclase-hosted noble gases. Ar
221 isotopes are again enriched in radiogenic ^{40}Ar and cosmogenic ^{38}Ar , with bulk $^{40}\text{Ar}/^{36}\text{Ar}$ and $^{38}\text{Ar}/^{36}\text{Ar}$ values of
222 3221 ± 57 and 0.413 ± 0.009 , respectively. This lower $^{38}\text{Ar}/^{36}\text{Ar}$ value when compared to the bulk stepped heating
223 data suggests a lower cosmogenic contribution, which may be a result of differential siting of cosmogenic and
224 non-cosmogenic isotopes within the sample, or a higher atmospheric contribution in the crushed sample
225 measurement. Total abundances of released ^3He , ^{20}Ne and ^{40}Ar during all crushing steps are $0.310 \pm 0.015 \times 10^{-13}$
226 mol.g^{-1} , $0.04854 \pm 0.00064 \times 10^{-13}$ mol.g^{-1} , and $0.2344 \pm 0.0011 \text{ mol.g}^{-1}$ respectively.

227 Resolvable amounts of Kr and Xe were released only during crushing steps 1 and 2, with total ^{84}Kr and
228 ^{132}Xe released equal to $2.59 \pm 0.07 \times 10^{-16} \text{ mol.g}^{-1}$ and $0.138 \pm 0.034 \times 10^{-16} \text{ mol.g}^{-1}$, respectively. Xe isotope spectra
229 (shown in Fig. 3) are notably distinct from step heating results: no significant enrichments in cosmogenic
230 isotopes are observed, but measurable excesses of fissionogenic isotopes ^{134}Xe and ^{136}Xe are present. This clearly
231 indicates a difference in how cosmogenic and fissionogenic Xe isotopes are produced and stored within the sample.
232 Whilst cosmogenic Xe isotopes are produced (and tightly retained) within the mineral lattice, Xe produced
233 during spontaneous fission events can be ejected into surrounding inclusions and grain boundaries and reside
234 there (Hebeda et al., 1987). Kr isotope spectra for crushing steps, shown in Fig. 4, display small but resolvable
235 excesses in cosmogenic light isotopes, but no evidence for fissionogenic Kr contribution.

236 **3.3 Laser Ablation**

237 Abundance and isotope ratio data for the 6 laser ablation analyses are presented in Fig. 6 and Tables 1
238 & 2. The dramatic contrast between these analyses reveals a strong heterogeneity in noble gas signatures
239 between the different mineral phases, Px and Pl. Pyroxenes have high abundances of ^3He and ^{20}Ne compared to
240 the bulk sample, with ^3He ranging from 510 to 553 ($\times 10^{-13}$) mol.cm^{-3} and ^{21}Ne from 101 to 109 ($\times 10^{-13}$) mol.cm^{-3} .

241 Assuming a mineral density of 3.4 g.cm⁻³, this corresponds to approximately 1.5x enrichment in ³He and 2x
242 enrichment in ²⁰Ne compared to the bulk rock concentration. Conversely, ⁴⁰Ar abundances, while highly variable
243 and ranging from 9 to 259 (x10⁻¹⁰) mol.cm⁻³, are consistently lower in Px1-5 than the bulk sample. ³He/⁴He ratios
244 range from 0.00325 to 0.00647. Ne isotopes are mostly within the range of expected cosmogenic production
245 ratios, as shown in Figure 2. ²⁰Ne/²²Ne ranges from 0.71 to 1.56, with this highest value suggesting a small
246 trapped contribution, and ²¹Ne/²²Ne ranges from 0.77 to 0.99. ⁴⁰Ar/³⁶Ar ratios range from 260 to 811,
247 consistently lower than bulk values, whilst ³⁸Ar/³⁶Ar is highly variable between pyroxene grains, ranging from
248 0.42 up to 4.55, which is higher indeed than can be likely ascribed to bulk cosmogenic isotope production, and
249 may reflect some small-scale heterogeneity revealed by laser ablation analyses. It should also be noted however,
250 the large uncertainty associated with this high value, reflecting the extremely low quantity of gas released.

251 Analysis Plag1, targeting feldspar grains, shows contrasted signatures to the pyroxene analyses. He and
252 Ne are both strongly depleted: ³He abundance is $7 \pm 1 \times 10^{-13}$ mol.cm⁻³ and ²¹Ne was just $10 \pm 0.4 \times 10^{-13}$ mol.cm⁻³
253 compared to values of >100 mol.cm⁻³ for the px analyses. Blank contributions to ²⁰Ne and ²²Ne precluded
254 accurate determination of Ne isotope ratios, but ⁴⁰Ar is strongly enriched at $833 \pm 94 \times 10^{-10}$ mol.cm⁻³. This ⁴⁰Ar
255 enrichment is further evidenced in the highest ⁴⁰Ar/³⁶Ar measured in this sample, at $50,400 \pm 3700$, with
256 ³⁸Ar/³⁶Ar = 1.3 ± 0.1 . Taken together, these laser ablation results show that cosmogenic He and Ne are strongly
257 concentrated in individual pyroxene grains, whilst radiogenic ⁴⁰Ar is conversely concentrated in the interstitial
258 plagioclase feldspar. The former of these observations may be due to the finer grained groundmass being unable
259 to effectively retain the products of cosmic ray spallation, particularly for the lighter elements. The latter is
260 intuitively the result of the greatly increased K abundance in the plagioclase. Nicklas et al. (2022) report an
261 average K₂O content in the plagioclase phases of EC002 of 0.82 wt%, with undetectable quantities in the majority
262 of their pyroxene analyses).

263 **3.4 Nitrogen**

264 Nitrogen isotopic and abundance data, as well as simultaneously acquired neon and argon data are
265 presented in Table 5. The nitrogen isotopic ratio released in the first laser heating step is close to atmosphere,
266 with $\delta^{15}\text{N} = 0.9 \pm 0.5 \text{ ‰}$, and may reflect a contribution of surficial atmospheric contamination. However the
267 two subsequent releases show clear enrichments in ¹⁵N, with $\delta^{15}\text{N}$ values of $5.5 \pm 0.5 \text{ ‰}$ and $45.0 \pm 0.6 \text{ ‰}$
268 respectively. Bulk EC 002 $\delta^{15}\text{N}$ is $15.0 \pm 0.5 \text{ ‰}$, rising to $20.7 \pm 0.5 \text{ ‰}$ if the first step is discounted. Bulk N
269 abundance is $3.82 \pm 0.08 \times 10^{-7}$ mol.g⁻¹, equivalent to 5.3 ppm. Associated neon and argon data are similar to the
270 bulk values obtained by step heating, with bulk ²⁰Ne/²²Ne = 0.802 ± 0.044 , ²¹Ne/²²Ne = 0.866 ± 0.077 , ⁴⁰Ar/³⁶Ar
271 = 9088 ± 251 and ³⁸Ar/³⁶Ar = 1.50 ± 0.04 . A similar noble gas distribution is observed in the stepped laser
272 extraction as in the step heating furnace extraction, with higher ⁴⁰Ar/³⁶Ar being released at lower temperatures.
273 Neon isotopes are plotted in Fig. 2 where it can be seen that the first extraction step yields isotope ratios
274 consistent with cosmogenic production from a plagioclase composition, whilst the latter two extraction steps
275 are similar to cosmogenic production from a pyroxene composition. Abundances of ⁴⁰Ar and ²¹Ne are also similar

276 to those observed in the step heating analysis, with ^{40}Ar abundance of $83.8 \pm 2.0 \times 10^{-10}$ mol.g $^{-1}$ and ^{21}Ne
277 abundance of $20.3 \pm 1.6 \times 10^{-13}$ mol.g $^{-1}$.

278 **4. Discussion**

279 **4.1 Retention of noble gases produced by radioactive decay**

280 *4.1.1 Helium*

281 ^4He is produced directly as α -particles during decay of U-Th series nuclides. However, the produced ^4He
282 has a low propensity to be effectively retained in most mineral structures due to its small atomic radius, high
283 diffusivity, and the α -recoil imparted to the atom upon production. He is therefore only effectively retained in
284 certain minerals (e.g. zircon and magnetite) and at low temperatures $<200^\circ\text{C}$ (Damon, 1957; Zeitler et al., 1987).
285 A (U-Th)/He date can be calculated following Farley (2002):

286
$$^4\text{He} = 8 \times ^{238}\text{U}(e^{\lambda_{238}t} - 1) + 7 \times ^{235}\text{U}(e^{\lambda_{235}t} - 1) + 6 \times ^{232}\text{Th}(e^{\lambda_{232}t} - 1) \quad (1)$$

287

288 Bulk U abundance in EC 002 is reported by Barrat et al. (2021) as 109 ppb. However, U abundance
289 measurements are prone to alteration by terrestrial weathering, which is especially prevalent for desert finds
290 such as EC 002 (e.g. Dreibus et al., 2007). We therefore estimate the pre-terrestrial U abundance indirectly using
291 the bulk Th abundance of 136 ppb (Barrat et al., 2021) and divide by the chondritic Th/U ratio of 3.7, to obtain
292 an estimate of 37 ppb U.

293 Assuming terrestrial U isotope ratio and correcting the ^4He abundance for cosmogenic ^4He assuming a
294 cosmogenic production ratio $^3\text{He}/^4\text{He}$ of 0.2, this results in a calculated (U-Th)/He age of 2700 Myr. This age is
295 far short of the $^{26}\text{Al}-^{26}\text{Mg}$ crystallization age of the sample (4565 Myr), indicating the loss of radiogenic He either
296 partially or completely from some minerals.

297 *4.1.2 Argon*

298 ^{40}Ar is produced as a result of ^{40}K decay, allowing ages to be calculated using the widely applied K-Ar
299 system (Kelley, 2002). Whilst there are a number of complicating factors that make the determination of a
300 reliable K-Ar age difficult for samples such as this one (Bogard, 2011), we can make a rough estimate of the time
301 required to produce the observed levels of radiogenic ^{40}Ar . Using the bulk K abundance of 3057 ppm (Barrat et
302 al., 2021) and assuming a terrestrial K isotopic composition results in a calculated K-Ar model age of 4530^{+120}_{-130}
303 Myr. No correction for trapped ^{40}Ar is applied, as even if all trapped ^{36}Ar is atmospheric it would affect the
304 resultant calculation by only 20 Myr. This is within error of the reported $^{26}\text{Al}-^{26}\text{Mg}$ age, and indicates that
305 radiogenic ^{40}Ar has been effectively retained within Erg Chech 002 since shortly after its formation. As Ar is
306 susceptible to escape via thermal diffusion from feldspar at temperatures above $\sim 200^\circ\text{C}$ (Cassata and Renne,
307 2013), we can thus ascertain that the sample has undergone no significant thermal events since shortly after its
308 formation and the destruction of its original parent body.

309 **4.1.3 Xenon**

310 Xenon isotopes $^{131}, 132, 134, 136$ Xe are produced in variable amounts by spontaneous fission of naturally
 311 occurring 238 U ($T_{1/2} = 4468$ Myr). Additionally, in ancient samples, fissionogenic remnants of extinct 244 Pu ($T_{1/2} = 80$
 312 Myr) may be observed (Hudson et al., 1987). As the spontaneous fission of U and Pu produces these heavy Xe
 313 isotopes in characteristic proportions, the fissionogenic excesses can be used to identify the relative contributions
 314 of 238 U and 244 Pu to fissionogenic Xe (e.g. Parai and Mukhopadhyay, 2015). This can be calculated by comparing the
 315 ratios of the radiogenic excesses of these isotopes, normalised to 136 Xe.

$$316 \quad ^{136}Xe^* = ^{136}Xe_{sample} - ^{130}Xe_{sample} \times \left(\frac{^{136}Xe}{^{130}Xe} \right)_{air}$$

317 (2)

$$318 \quad \frac{^{136}Xe^*}{^{136}Xe^*} = \frac{\left(\frac{^{136}Xe}{^{130}Xe} \right)_{sample} - 1}{\left(\frac{^{136}Xe}{^{130}Xe} \right)_{air} - \left(\frac{^{136}Xe}{^{130}Xe} \right)_{sample} + 1}$$

319 (3)

320 The resulting fissionogenic excess ratios are plotted in Fig. 7, alongside expected U and Pu fission yields
 321 (compiled from Ballentine and Burnard, 2002). The relatively large uncertainties associated with our data
 322 preclude a definitive assessment of the parent of the fissionogenic Xe, although the consistently low $^{132}Xe^*/^{136}Xe^*$
 323 across our three measurements would favour U as the primary source (Fig. 7).

324 Given the age of EC 002 this is an unexpected result, as there would still have been significant extant
 325 244 Pu present at the time of formation. In a closed system, Xe sourced from Pu fission is expected to dominate
 326 due to the greater spontaneous fission decay rate of 244 Pu compared to 238 U (Kuroda and Myers, 1994). This
 327 effect is readily seen in undegassed mantle samples from the (comparatively younger) Earth (Kunz et al., 1998;
 328 Mukhopadhyay, 2012).

329 The expected contribution of fissionogenic $^{136}Xe^*$ produced over the lifetime of the sample can be
 330 calculated from the respective decay constants and fission yields (e.g. Ozima and Podosek, 2002). We use a
 331 sample U abundance of 37 ppb (see section 4.2.1) and assume a chondritic Pu/U of 0.0068 (Hudson et al., 1987).
 332 These parameters give an expected $^{136}Xe^*$ of 1.55×10^{-16} mol.g $^{-1}$, with ~97% sourced from 244 Pu fission. Measured
 333 ^{136}Xe abundance in EC 002 is 7.72×10^{-16} mol.g $^{-1}$, however the primordial isotope ratios are within uncertainty of
 334 atmospheric values, suggesting a contribution from secondary atmospheric contamination. We can correct for
 335 this atmospheric contribution to isolate the fissionogenic ^{136}Xe component. We calculate a $^{136}Xe^*$ abundance of
 336 just 4.75×10^{-17} mol.g $^{-1}$ using Eq. 2. The discrepancy between measured and predicted $^{136}Xe^*$ is unlikely to be due

337 to loss of Xe, as the more mobile radiogenic ^{40}Ar appears to have been effectively retained within the sample,
338 as demonstrated in the previous section. Whilst Xe could possibly be lost via fissionogenic recoil (Hebeda et al.,
339 1987), recoil distances for Xe ions are only $\sim 5 \mu\text{m}$ in rocks (Ziegler, 1980), making it unlikely that Xe could be lost
340 quantitatively via this mechanism (Ragettli et al., 1994).

341 Another possibility is that the assumption for Pu/U ratio is invalid in this case. Lugmair & Marti (1977)
342 proposed a Pu/U ratio of 0.004 based on the analysis of achondrite Angra Dos Reis (ADOR), suggesting that
343 planetary differentiation might have fractionated the Pu/U ratio towards lower values than the one determined
344 by Hudson et al (1987) for the Saint-Séverin chondrite. This lower value for Pu/U would result in a lower expected
345 $^{136}\text{Xe}^*$ of $9.32 \times 10^{-17} \text{ mol.g}^{-1}$, much closer to our observed value.

346 **4.2 Cosmogenic noble gases and exposure ages**

347 *4.2.1 Cosmogenic production model and initial parameters*

348 The unique chemical composition of EC 002 precludes the robust application of semi-empirical methods
349 for CRE age investigation, which are based on the comparative analysis of a number of meteorites from the same
350 group (e.g. Eugster and Michel, 1995). As such, we must use a purely theoretical model derived *a priori* from the
351 physical interactions of high-energy particles with solid matter. A number of these models have been developed
352 specifically for the investigation of cosmogenic nuclide production within extraterrestrial samples (e.g. Leya et
353 al., 2000; Leya and Masarik, 2009). These models produce theoretical predictions of cosmogenic nuclide
354 production rates and their variation with chemical composition of the target material, size of the parent body
355 and shielding depth of the sample within it. The chemical composition of the sample is a variable input
356 parameter, and as such these models can be applied to a meteorite of any composition, or even to specific
357 mineral phases within a meteorite (Roth et al., 2016). We are however unable to account satisfactorily for the
358 matrix effect, as this must be considered for different meteorite groups during the initial construction of the
359 model. In the rest of this discussion, we use the Leya & Masarik, 2009 model for cosmogenic production in
360 ordinary chondrites, as this is the closest available analogue for EC 002, especially given its likely origin from
361 partial melting of a non-carbonaceous chondrite (Barrat et al., 2021).

362 The Leya & Masarik, 2009, model allows for the calculation of production rates for all relevant noble
363 gas isotopes (^3He , ^{20}Ne , ^{21}Ne , ^{22}Ne , ^{36}Ar , ^{38}Ar). As production rate is strongly dependent on shielding, the
364 consideration of multiple isotopes is typically required in order to find a unique solution for cosmogenic isotope
365 production rates used to derive cosmic-ray exposure ages. The production ratio of two isotopes (e.g. $^{22}\text{Ne}/^{21}\text{Ne}$,
366 $^3\text{He}/^{21}\text{Ne}$) can be used as a shielding correction parameter by comparing the theoretical production ratio to the
367 observed data in order to estimate the true shielding experienced by the sample (Wieler, 2002). The pre-impact
368 meteoroid radius is also a required model input, in order to properly account for 4π exposure. Based on a
369 recovered mass of 32 kg of material, we estimate a 20 cm pre-impact radius for EC 002, although we note that
370 a slightly larger radius will not have a significant effect on the following discussion.

371 *4.2.2 CRE age modelling with He and Ne*

372 In Fig. 8, we plot the modelled ^{21}Ne production rate (P21) vs shielding depth in a 40 cm-diameter body,
373 as well as predicted production ratios of $^{22}\text{Ne}/^{21}\text{Ne}$ and $^{3}\text{He}/^{21}\text{Ne}$ for a range of pertinent chemical compositions,
374 including the bulk EC 002 composition (Barrat et al., 2021), the average pyroxene and plagioclase compositions
375 (Nicklas et al., 2022), as well as the compositions of the individual pyroxene and plagioclase phases targeted in
376 our laser ablation analyses determined via SEM. The range of expected $^{20}\text{Ne}/^{22}\text{Ne}$ and $^{21}\text{Ne}/^{22}\text{Ne}$ production
377 ratios for bulk, average pyroxene, and average plagioclase compositions are also shown in Fig. 2 alongside our
378 measured data from various extraction techniques.

379 Conventionally, the shielding depth of the sample can be estimated by matching the observed
380 cosmogenic production ratios to the theoretical values at different shielding depths. However, an immediate
381 issue arising from the comparison of these theoretical production rates with our measured data is that our bulk
382 $^{22}\text{Ne}/^{21}\text{Ne}$ and $^{3}\text{He}/^{21}\text{Ne}$ measurements are significantly different from those predicted for the bulk composition
383 by theory, regardless of shielding depth. In terms of neon isotope composition, our bulk measurement plots
384 much closer to the cosmogenic production ratio expected from a pure pyroxene phase (seen in Fig. 2 and Fig.
385 8), suggesting that the pyroxene grains are contributing the vast majority of the observed cosmogenic Ne
386 present in the sample. This is perhaps unsurprising given that laser ablation data show extremely low ^{21}Ne
387 abundances in the plagioclase compared to the pyroxenes (Fig. 6), to the extent that reliable neon isotope ratios
388 could not be determined in the plagioclase analysis. Alongside the discordant (U-Th)/He date described in
389 section 5.1.1, which indicates significant He loss from the sample, we conclude that cosmogenic Ne is not
390 quantitatively retained in the plagioclase phases, and likely diffuses out over relatively short timescales, even at
391 low temperatures. As such, any Ne- or He-derived cosmic ray exposure (CRE) age for bulk EC 002 is unlikely to
392 represent the true exposure duration. Even if it were possible to accurately determine the proportion of
393 pyroxene in our (now destroyed) sample, an assumption that 100% of cosmogenic Ne is derived from these
394 pyroxene phases is tenuous, as low temperature step-heating results suggest at least a small cosmogenic Ne
395 contribution from the plagioclase phases as well (Fig. 2).

396 The laser ablation data from individual pyroxenes may offer a more promising opportunity for
397 constraining CRE age. However, whilst ^{21}Ne abundances in these analyses are relatively precise and consistent
398 across the 5 pyroxenes analysed (Fig. 6), the isotopic ratios have significant uncertainties that preclude a reliable
399 estimation of the shielding depth (due to relatively greater blank contribution to ^{20}Ne and ^{22}Ne). The expected
400 P21 for average pyroxene composition ranges from 7.6 to 11.1 ($\times 10^{-14}$) $\text{mol.g}^{-1}.\text{Myr}^{-1}$ for our given range of
401 shielding depths, giving a CRE age range from 27.6 to 40.6 Myr for our pyroxene measurements (average ^{21}Ne
402 abundance of $3.08 \times 10^{-12} \text{ mol.g}^{-1}$).

403 4.2.3 CRE age modelling with Ar

404 Argon is less widely used than the lighter noble gases for cosmogenic exposure analysis (Ott, 2002).
405 However, given the apparent issues with He and Ne diffusive loss from plagioclase phases described in the
406 previous section, Ar may prove more robust in this particular case. The K-Ar age calculated in section 4.1.2 is

407 concordant with the ^{26}Al - ^{26}Mg age, suggesting that Ar has been quantitatively retained within the sample over
408 its lifetime.

409 The predicted P38 values for bulk EC 002 composition range from 3.7 to 5.8 ($\times 10^{-14}$) mol.g $^{-1}$.Myr $^{-1}$. The
410 deconvolution of the Ar composition of the stepped heating sample is shown in Table 6, where the cosmogenic
411 abundance $^{38}\text{Ar}_{\text{cos}} = 2.20 \times 10^{-12}$ mol.g $^{-1}$. This corresponds to a CRE age range from 37.9 to 59.5 Myr. This age
412 range overlaps with that derived from ^{21}Ne in individual pyroxenes. Unfortunately $\text{P38}_{\text{bulk}}/\text{P21}_{\text{px}}$ shows little
413 variation with shielding depth, and cannot be used to reliably constrain it. Further constraints on CRE age could
414 potentially be implemented using individual mineral Ar isotope data, but the Ar results from laser ablation are
415 quite variable (which may be due to a greater heterogeneity in target elements for Ar as compared to He and
416 Ne) and have large associated uncertainties due to the small amounts of gas released (Table 1).

417 **4.3 Planetary noble gases**

418 As discussed in the previous sections, the vast majority of the light noble gases, He and Ne, present in
419 EC 002 are either cosmogenic or radiogenic in origin. As such, constraining the abundance of any trapped
420 primordial or "planetary" component is not straightforward. Neon isotopes are indistinguishable from pure
421 cosmogenic values, suggesting the primordial component is negligible. Furthermore, primordial Kr and Xe ratios
422 are atmospheric, suggesting that any indigenous primordial component is so small that it is indistinguishable
423 from inevitable atmospheric contamination. Argon therefore represents the only element for which a primordial
424 component can be quantified, and this component may provide a crucial insight into the volatile degassing
425 history of EC 002 and, by extension, of its parent body.

426 The deconvolution of the Ar composition of EC002 for both the stepped heating and laser heating
427 samples is shown in Table 6. We find $^{36}\text{Ar}_{\text{tr}} = 6.98 \times 10^{-13}$ mol.g $^{-1}$, in the stepped heating sample, and $^{36}\text{Ar}_{\text{tr}} =$
428 1.19×10^{-13} mol.g $^{-1}$ for the laser heating sample. As these values represent only a small fraction of the total Ar in
429 the sample, their associated uncertainties are relatively large, on the order of the uncertainty of the total ^{36}Ar
430 measurements of 5×10^{-14} and 3×10^{-14} respectively. This non-cosmogenic ^{36}Ar may derive from a true primordial
431 component, atmospheric contamination, or a mixture of both. As such, it can be considered to represent only
432 an upper limit for the trapped ^{36}Ar abundance. However, the distinct nitrogen isotope ratio between EC 002 and
433 the terrestrial atmosphere (+15.0 ‰) as well as the drastically different $^{36}\text{Ar}_{\text{tr}}/\text{N}$ ratio (3.12×10^{-7} compared to a
434 terrestrial value of 2.01×10^{-3}) are both evidence that atmospheric contamination is likely minimal.

435 This trapped ^{36}Ar abundance ($^{36}\text{Ar}_{\text{tr}}$) is within the range reported for other achondritic meteorites
436 (Busemann and Eugster, 2002), although those values can vary greatly between different achondrite classes,
437 and it is not clear which would represent the most suitable analogue. The $^{36}\text{Ar}_{\text{tr}}$ abundance of EC 002 is
438 additionally around an order of magnitude lower than previously measured values for OC chondrites (e.g.
439 Schelhaas et al., 1990), the likely parent composition from which the EC 002 melt was derived, indicating a
440 significant extent of degassing.

441 The solubility of noble gases in a melt of andesitic composition was determined empirically by Lux,
 442 1987, who reported a value for Ar of $6.9 \times 10^{-9} \text{ mol.g}^{-1}.\text{atm}^{-1}$. Using this value alongside our calculated primordial
 443 abundance, we can estimate the partial pressure of ^{36}Ar in equilibrium with EC 002 to be $\sim 2 \times 10^{-5}$ atm. The
 444 physical interpretation of this value depends on whether EC 002 represents an extrusive or intrusive melt. This
 445 is comparable to the terrestrial atmospheric value of 3.1×10^{-5} atm, and raises the possibility that the EC 002
 446 parent body, and perhaps other early-forming planetesimals, could have possessed a relatively dense
 447 atmosphere during the earliest stages of solar system evolution.

448 **4.4 Nitrogen and degassing history**

449 The degassing history of EC 002 can also be investigated by looking at its nitrogen composition. Figure
 450 9 shows the nitrogen isotopic composition and $^{36}\text{Ar}_{\text{tr}}/\text{N}$ of EC 002 alongside literature data for selected meteorite
 451 groups. EC 002 is thought to have derived from melting of a precursor body with non-carbonaceous chondrite
 452 composition (Barrat et al., 2021). Figure 9 shows that EC 002 has $\delta^{15}\text{N}$ values within the range observed for
 453 pristine ordinary chondrites of petrographic type 3, but with a somewhat lower $^{36}\text{Ar}_{\text{tr}}/\text{N}$ ratio.

454 $^{36}\text{Ar}_{\text{tr}}/\text{N}$ may be fractionated during degassing from molten silicates, either during planetary
 455 differentiation or a magma ocean stage of accretion (Miyazaki et al., 2004). The degree of $^{36}\text{Ar}_{\text{tr}}/\text{N}$ fractionation
 456 is highly dependent on the redox state of the molten silicate phase during degassing. Whilst Ar and N have
 457 similar solubility in silicate melts at and above the iron-wüstite (IW) buffer (Libourel et al., 2003; Miyazaki et al.,
 458 2004), N becomes much more soluble at more reducing conditions as it is able to form chemical bonds to H or
 459 Si, rather than remaining as inert N_2 (Boulliung et al., 2020). Furthermore, at these reduced conditions N isotopes
 460 may fractionate during degassing, with experimental evidence suggesting a possible fractionation factor of up
 461 to $\alpha_{\text{N}} = 1.035$ (Dalou et al., 2022).

462 We apply a simple Rayleigh fractionation model to investigate degassing of EC 002 using the following
 463 equations to describe elemental $^{36}\text{Ar}/\text{N}$ and isotopic $\delta^{15}\text{N}$ fractionation respectively.

$$464 \quad \left(\frac{^{36}\text{Ar}}{\text{N}} \right)_{\text{init}} = \frac{\left(\frac{^{36}\text{Ar}}{\text{N}} \right)_{\text{obs}}}{f^{(\alpha_{\text{N-Ar}} - 1)}} \quad (4)$$

$$466 \quad \delta^{15}\text{N}_{\text{init}} = \delta^{15}\text{N}_{\text{obs}} - (f - 1) \times 1000 \ln(\alpha_{\text{N}}) \quad (5)$$

468 Where f is the fraction of N remaining in the melt, α_{N} is the isotopic fractionation factor for nitrogen
 469 degassing, and $\alpha_{\text{N-Ar}}$ is the elemental fractionation factor controlling $^{36}\text{Ar}/\text{N}$ (effectively the ratio of Ar to N
 470 solubility in silicate melt). The subscripts *obs* and *init* refer to the observed value (measured in our sample) and
 471 the hypothetical initial value of the EC 002 parent body prior to degassing. This formulation explicitly solves for
 472 the initial composition, as our observed value represents the composition after a certain level of degassing f .

473 As such, we calculate here the range of initial compositions from which it is possible to produce the EC 002
474 composition by degassing.

475 We consider two degassing scenarios, representing degassing at low pressure under oxidised and
476 reduced conditions respectively. For oxidising conditions we assume negligible isotopic fractionation (Cartigny
477 et al., 2001), and N solubility twice that of Ar ($\alpha_N = 1$; $\alpha_{N-Ar} = 2$). Under reducing conditions we assume isotopic
478 fractionation similar to that observed by Dalou et al., 2022, consistent with kinetic degassing of N primarily
479 speciated as NH₃, and N solubility 10x higher than Ar ($\alpha_N = 1.035$; $\alpha_{N-Ar} = 10$). For each of these scenarios we
480 calculate the range of possible starting compositions considering that EC 002 represents the degassed
481 composition with f representing the fraction of degassing experienced. The resulting composition curves are
482 plotted in Fig. 9, labeled (ox) and (red) respectively, with annotations showing the level of degassing that
483 would have been experienced from given starting compositions.

484 Both the oxidising and reducing models are clearly compatible with EC 002 being derived from an OC-
485 like parent body, but the level of degassing required is markedly different between the two scenarios. Under
486 oxidising conditions, >80% degassing is required for the initial composition to be within the observed OC
487 range, whilst under reducing conditions only around 20-40% degassing is required. Crucially however the
488 degassing model is incompatible with a parent body composition of the other major class of non-carbonaceous
489 chondrites, the enstatite chondrites (typically abbreviated as EC although EnCh is used henceforth to avoid
490 confusion with the unrelated EC 002). This refinement of the possible parent body composition from non-
491 carbonaceous (EnCh + OC) down to OC is important for understanding the origin of the EC 002 parent body as
492 EnCh are thought to have formed closer to the sun (e.g. Piani et al., 2020). Furthermore, Earth displays
493 nucleosynthetic isotope signatures primarily favouring an EnCh-like origin (Carlson et al., 2018), and so this
494 may preclude a genetic link between Earth and the EC 002 parent body.

495 **5. Conclusion**

496 Erg Chech 002 is a unique meteorite that expands our understanding of the range of geological
497 processes occurring in the early solar system. We present a comprehensive analysis of its noble gas composition,
498 using a variety of extraction techniques to fully characterise the distribution of noble gas components within
499 different phases.

500 Combined step heating and laser ablation analyses demonstrate a clear dichotomy between the
501 pyroxene and plagioclase phases of EC 002 in terms of their ability to retain noble gases of cosmogenic and
502 radiogenic origin. He and Ne appear to be quantitatively lost from the plagioclase phases, resulting in
503 inconsistent cosmic ray exposure ages and radiogenic (U-Th)/He age. He and Ne laser ablation analysis shows
504 that there is significant preservation of cosmogenic isotopes within the pyroxene phases. Conversely, Ar appears
505 to be effectively retained in both pyroxene and plagioclase phases, with coherent K-Ar age. Thus we consider Ar
506 to be a more reliable candidate for cosmic ray exposure age, although the unreliability of He and Ne in this
507 regard makes shielding corrections problematic. This comprehensive analysis of all noble gas isotopes across

508 different phases here demonstrates the potential pitfalls of relying solely on single noble gas element datasets
509 for cosmogenic and radiogenic calculations.

510 Cosmogenic and radiogenic excesses are also observed in the heavy noble gases Kr and Xe. The levels
511 of observed fissionogenic $^{136}\text{Xe}^*$ are slightly lower than would be expected for a sample of this age, and may
512 indicate that the initial Pu/U of the EC 002 parent body was non-chondritic. As the noble gas inventory is
513 dominated by radiogenic and cosmogenic isotopes, determination of primordial isotope abundances is not
514 straightforward, although the non-cosmogenic ^{36}Ar abundances suggest that the sample is not completely
515 degassed. Nitrogen isotope analysis and $^{36}\text{Ar}/\text{N}$ ratios support an OC-like initial volatile composition for the EC
516 002 parent body.

517 Acknowledgments: This study was supported by the European Research Council (ERC) under the European
518 Union's Horizon 2020 research and innovation program (PHOTONIS Advanced Grant # 695618 to BM and
519 VOLATILIS Starting Grant 715028 to EF).

520 References

521 Anand A., Kruttasch P. M. and Mezger K. (2022) 53Mn-53Cr chronology and ϵ 54Cr- Δ 17O genealogy
522 of Erg Chech 002: The oldest andesite in the solar system. *Meteoritics & Planetary Science* **57**, 2003–2016.

524 Ballentine C. J. and Burnard P. G. (2002) Production, Release and Transport of Noble Gases in the
525 Continental Crust. *Reviews in Mineralogy and Geochemistry* **47**, 481–538.

526 Barrat J.-A., Chaussidon M., Yamaguchi A., Beck P., Villeneuve J., Byrne D. J., Broadley M. W. and
527 Marty B. (2021) A 4,565-My-old andesite from an extinct chondritic protoplanet. *PNAS* **118**.

528 Bekaert D. V., Broadley M. W., Delarue F., Avice G., Robert F. and Marty B. (2018) Archean kerogen
529 as a new tracer of atmospheric evolution: Implications for dating the widespread nature of
530 early life. *Science Advances* **4**, eaar2091.

531 Bekaert D. V., Curtice J., Meier M. M. M., Byrne D. J., Broadley M. W., Seltzer A., Barry P., Kurz M. D.
532 and Nielsen S. G. (2022) Determining the noble gas cosmic ray exposure ages of 23
533 meteorites (8 chondrites and 15 achondrites) from modeling and empirical methods.
534 *Meteoritics & Planetary Science* **57**, 1542–1569.

535 Bekaert D. V., Marrocchi Y., Meshik A., Remusat L. and Marty B. (2019) Primordial heavy noble gases
536 in the pristine Paris carbonaceous chondrite. *Meteoritics & Planetary Science* **54**, 395–414.

537 Bogard D. D. (2011) K–Ar ages of meteorites: Clues to parent-body thermal histories. *Geochemistry*
538 **71**, 207–226.

539 Boulliung J., Füri E., Dalou C., Tissandier L., Zimmermann L. and Marrocchi Y. (2020) Oxygen fugacity
540 and melt composition controls on nitrogen solubility in silicate melts. *Geochimica et*
541 *Cosmochimica Acta* **284**, 120–133.

542 Broadley M. W., Barry P. H., Bekaert D. V., Byrne D. J., Caracausi A., Ballentine C. J. and Marty B.
543 (2020a) Identification of chondritic krypton and xenon in Yellowstone gases and the timing
544 of terrestrial volatile accretion. *PNAS* **117**, 13997–14004.

545 Broadley M. W., Bekaert D. V., Marty B., Yamaguchi A. and Barrat J.-A. (2020b) Noble gas variations
546 in ureilites and their implications for ureilite parent body formation. *Geochimica et*
547 *Cosmochimica Acta* **270**, 325–337.

548 Busemann H. and Eugster O. (2002) The trapped noble gas component in achondrites. *Meteoritics &*
549 *Planetary Science* **37**, 1865–1891.

550 Carlson R. W., Brasser R., Yin Q.-Z., Fischer-Gödde M. and Qin L. (2018) Feedstocks of the Terrestrial
551 Planets. *Space Sci Rev* **214**, 121.

552 Cartigny P., Jendrejewski N., Pineau F., Petit E. and Javoy M. (2001) Volatile (C, N, Ar) variability in
553 MORB and the respective roles of mantle source heterogeneity and degassing: the case of
554 the Southwest Indian Ridge. *Earth and Planetary Science Letters* **194**, 241–257.

555 Cassata W. S. and Renne P. R. (2013) Systematic variations of argon diffusion in feldspars and
556 implications for thermochronometry. *Geochimica et Cosmochimica Acta* **112**, 251–287.

557 Chaussidon M., Barrat J. A., Yamaguchi A., Beck P., Villeneuve J., Byrne D. J., Broadley M. W. and
558 Marty B. (2021) 26Al Chronology of Erg Chech 002, the Oldest Andesite in the Solar System.
559 In Lunar and Planetary Science Conference. p. 2222.

560 Dai W., Moynier F., Fang L. and Siebert J. (2023) K-Ca dating and Ca isotope composition of the
561 oldest Solar System lava, Erg Chech 002. *Geochem. Persp. Let.* **24**, 33–37.

562 Dalou C., Deligny C. and Füri E. (2022) Nitrogen isotope fractionation during magma ocean
563 degassing: tracing the composition of early Earth's atmosphere. *Geochem. Persp. Let.*, 27–
564 31.

565 Damon P. E. (1957) Determination of radiogenic helium in zircon by stable isotope dilution
566 technique. *Trans. AGU* **38**, 945.

567 Day J. M. D., Ash R. D., Liu Y., Bellucci J. J., Iii D. R., McDonough W. F., Walker R. J. and Taylor L. A.
568 (2009) Early formation of evolved asteroidal crust. *Nature* **457**, 179–182.

569 Dreibus G., Haubold R., Huisl W. and SpetTEL B. (2007) Gain and loss of uranium by meteorites and
570 rocks, and implications for the redistribution of uranium on Mars. *Meteoritics & Planetary*
571 *Science* **42**, 951–962.

572 Eugster O. and Michel Th. (1995) Common asteroid break-up events of eucrites, diogenites, and
573 howardites and cosmic-ray production rates for noble gases in achondrites. *Geochimica et*
574 *Cosmochimica Acta* **59**, 177–199.

575 Fang L., Frossard P., Boyet M., Bouvier A., Barrat J.-A., Chaussidon M. and Moynier F. (2022) Half-life
576 and initial Solar System abundance of 146Sm determined from the oldest andesitic
577 meteorite. *Proc. Natl. Acad. Sci. U.S.A.* **119**.

578 Farley K. A. (2002) (U-Th)/He Dating: Techniques, Calibrations, and Applications. *Reviews in*
579 *Mineralogy and Geochemistry* **47**, 819–844.

580 Füri E., Zimmermann L. and Hiesinger H. (2021) Noble gas exposure ages of samples from Cone and
581 North Ray craters: Implications for the recent lunar cratering chronology. *Meteoritics &*
582 *Planetary Science* **56**, 2047–2061.

583 Grady M. M., Verchovsky A. B., Franchi I. A., Wright I. P. and Pillinger C. T. (2002) Light dement
584 geochemistry of the Tagish Lake CI2 chondrite: Comparison with CI1 and CM2 meteorites.
585 *Meteoritics & Planetary Science* **37**, 713–735.

586 Hashizume K. and Sugiura N. (1995) Nitrogen isotopes in bulk ordinary chondrites. *Geochimica et*
587 *Cosmochimica Acta* **59**, 4057–4069.

588 Hebeda E. H., Schultz L. and Freundel M. (1987) Radiogenic, fissionogenic and nucleogenic noble gases
589 in zircons. *Earth and Planetary Science Letters* **85**, 79–90.

590 Hudson G. B., Kennedy B. M., Podosek F. A. and Hohenberg C. M. (1987) *The early solar system*
591 *abundance of ^{244}Pu as inferred from the St Severin chondrite.*, United States.

592 Kelley S. (2002) K-Ar and Ar-Ar Dating. *Reviews in Mineralogy and Geochemistry* **47**, 785–818.

593 Kerridge J. F. (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundances and
594 isotopic compositions in bulk samples. *Geochimica et Cosmochimica Acta* **49**, 1707–1714.

595 Kruijer T. S., Touboul M., Fischer-Gödde M., Bermingham K. R., Walker R. J. and Kleine T. (2014)
596 Protracted core formation and rapid accretion of protoplanets. *Science*.

597 Kunz J., Staudacher T. and Allègre C. J. (1998) Plutonium-Fission Xenon Found in Earth's Mantle.
598 *Science* **280**, 877–880.

599 Kuroda P. K. and Myers W. A. (1994) Plutonium-244 Fission Xenon in the Most Primitive Meteorites.
600 *Radiochimica Acta* **64**, 167–174.

601 Leya I., Ammon K., Cosarinsky M., Dalcher N., Gnos E., Hofmann B. and Huber L. (2013) Light noble
602 gases in 12 meteorites from the Omani desert, Australia, Mauritania, Canada, and Sweden.
603 *Meteoritics & Planetary Science* **48**, 1401–1414.

604 Leya I., Lange H.-J., Neumann S., Wieler R. and Michel R. (2000) The production of cosmogenic
605 nuclides in stony meteoroids by galactic cosmic-ray particles. *Meteoritics & Planetary*
606 *Science* **35**, 259–286.

607 Leya I. and Masarik J. (2009) Cosmogenic nuclides in stony meteorites revisited. *Meteoritics &*
608 *Planetary Science* **44**, 1061–1086.

609 Libourel G., Marty B. and Humbert F. (2003) Nitrogen solubility in basaltic melt. Part I. Effect of
610 oxygen fugacity. *Geochimica et Cosmochimica Acta* **67**, 4123–4135.

611 Lugmair G. W. and Marti K. (1977) SmNdPu timepieces in the Angra dos Reis meteorite. *Earth and*
612 *Planetary Science Letters* **35**, 273–284.

613 Mahajan R. R., Sarbadhikari A. B. and Sisodia M. S. (2019) Noble gas, nitrogen composition and
614 cosmic ray exposure history of two eucrites Vissannapeta, Piplia Kalan and one howardite
615 Lohawat. *Planetary and Space Science* **165**, 23–30.

616 Matsuda J., Matsumoto T., Sumino H., Nagao K., Yamamoto J., Miura Y., Kaneoka I., Takahata N. and
617 Sano Y. (2002) The $^{3}\text{He}/^{4}\text{He}$ ratio of the new internal He Standard of Japan (HESJ).
618 *Geochemical Journal* **36**, 191–195.

619 Mazor E., Heymann D. and Anders E. (1970) Noble gases in carbonaceous chondrites. *Geochimica et
620 Cosmochimica Acta* **34**, 781–824.

621 Meier M. M. M., Bindi L., Heck P. R., Neander A. I., Spring N. H., Riebe M. E. I., Maden C., Baur H.,
622 Steinhardt P. J., Wieler R. and Busemann H. (2018) Cosmic history and a candidate parent
623 asteroid for the quasicrystal-bearing meteorite Khatyrka. *Earth and Planetary Science Letters*
624 **490**, 122–131.

625 Miyazaki A., Hiyagon H., Sugiura N., Hirose K. and Takahashi E. (2004) Solubilities of nitrogen and
626 noble gases in silicate melts under various oxygen fugacities: implications for the origin and
627 degassing history of nitrogen and noble gases in the earth. *Geochimica et Cosmochimica
628 Acta* **68**, 387–401.

629 Mukhopadhyay S. (2012) Early differentiation and volatile accretion recorded in deep-mantle neon
630 and xenon. *Nature* **486**, 101–104.

631 Nakamura T., Noguchi T., Zolensky M. E. and Tanaka M. (2003) Mineralogy and noble-gas signatures
632 of the carbonate-rich lithology of the Tagish Lake carbonaceous chondrite: evidence for an
633 accretionary breccia. *Earth and Planetary Science Letters* **207**, 83–101.

634 Nicklas R. W., Day J. M. D., Gardner-Vandy K. G. and Udry A. (2022) Early silicic magmatism on a
635 differentiated asteroid. *Nat. Geosci.* **15**, 696–699.

636 Ozima M. and Podosek F. A. (2002) *Noble gas geochemistry*, Cambridge University Press.

637 Parai R. and Mukhopadhyay S. (2015) The evolution of MORB and plume mantle volatile budgets:
638 Constraints from fission Xe isotopes in Southwest Indian Ridge basalts. *Geochemistry,
639 Geophysics, Geosystems* **16**, 719–735.

640 Piani L., Marrocchi Y., Rigaudier T., Vacher L. G., Thomassin D. and Marty B. (2020) Earth's water may
641 have been inherited from material similar to enstatite chondrite meteorites. *Science* **369**,
642 1110–1113.

643 Pravdivtseva O., Tissot F. L. H., Dauphas N. and Amari S. (2020) Evidence of presolar SiC in the
644 Allende Curious Marie calcium–aluminium-rich inclusion. *Nat Astron*, 1–8.

645 Ragettli R. A., Hebeda E. H., Signer P. and Wieler R. (1994) Uranium-xenon chronology: precise
646 determination of $\lambda_{\text{sf}} * 136 \text{Ysf}$ for spontaneous fission of ^{238}U . *Earth and Planetary Science
647 Letters* **128**, 653–670.

648 Rai V. K., Murty S. V. S. and Ott U. (2003) Nitrogen components in ureilites. *Geochimica et
649 Cosmochimica Acta* **67**, 2213–2237.

650 Rai V. K., Murty S. V. S. and Ott U. (2003) Noble gases in ureilites: cosmogenic, radiogenic, and
651 trapped components. *Geochimica et Cosmochimica Acta* **67**, 4435–4456.

652 Riebe M. E. I., Huber L., Metzler K., Busemann H., Luginbuehl S. M., Meier M. M. M., Maden C. and
653 Wieler R. (2017) Cosmogenic He and Ne in chondrules from clastic matrix and a lithic clast of
654 Murchison: No pre-irradiation by the early sun. *Geochimica et Cosmochimica Acta* **213**, 618–
655 634.

656 Roth A. S. G., Metzler K., Baumgartner L. P. and Leya I. (2016) Cosmic-ray exposure ages of
657 chondrules. *Meteoritics & Planetary Science* **51**, 1256–1267.

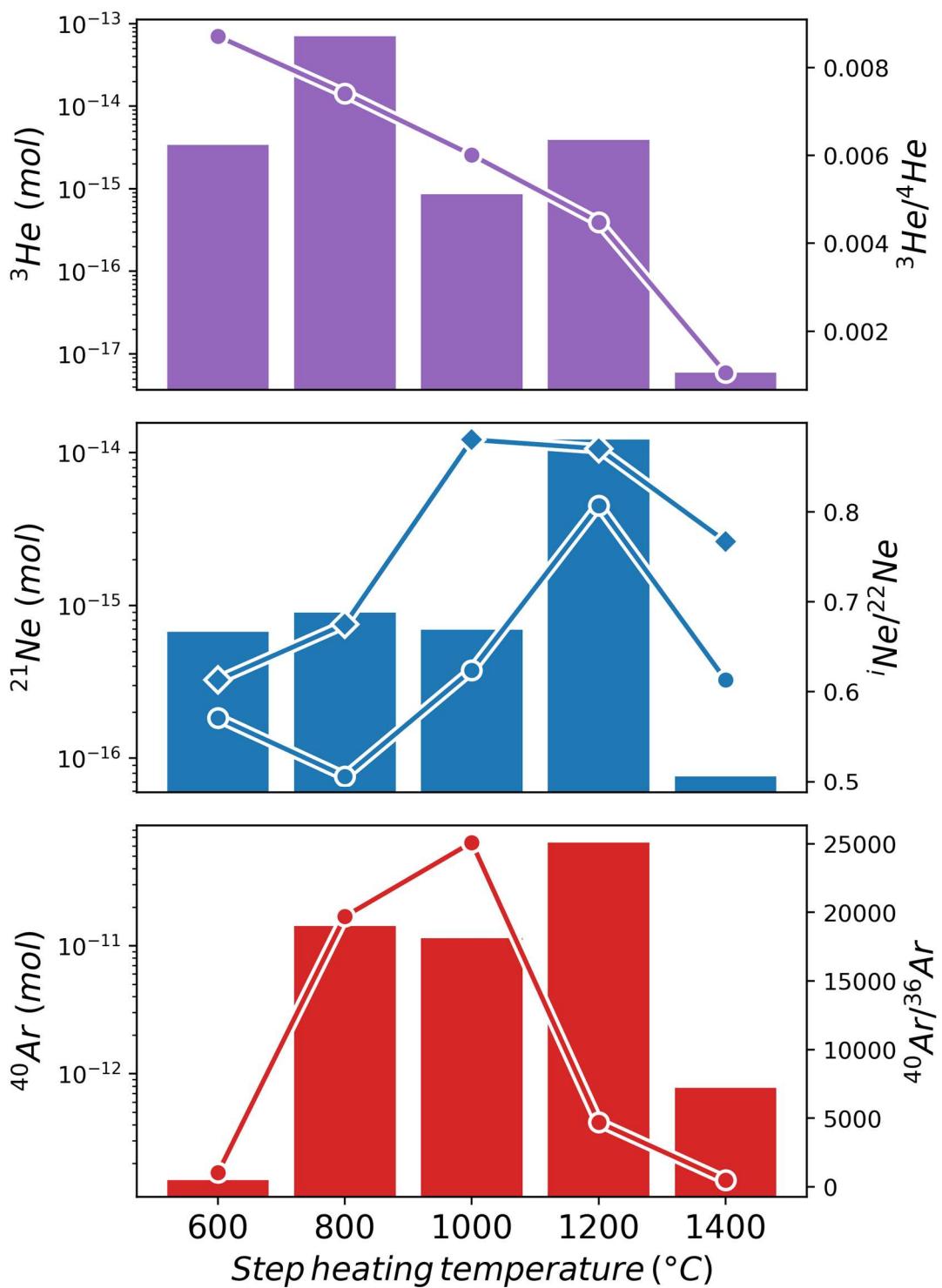
658 Schelhaas N., Ott U. and Begemann F. (1990) Trapped noble gases in unequilibrated ordinary
659 chondrites. *Geochimica et Cosmochimica Acta* **54**, 2869–2882.

660 Scherer P. and Schultz L. (2000) Noble gas record, collisional history, and pairing of CV, CO, CK, and
661 other carbonaceous chondrites. *Meteoritics & Planetary Science* **35**, 145–153.

662 Spitzer F., Burkhardt C., Nimmo F. and Kleine T. (2021) Nucleosynthetic Pt isotope anomalies and the
663 Hf-W chronology of core formation in inner and outer solar system planetesimals. *Earth and*
664 *Planetary Science Letters* **576**, 117211.

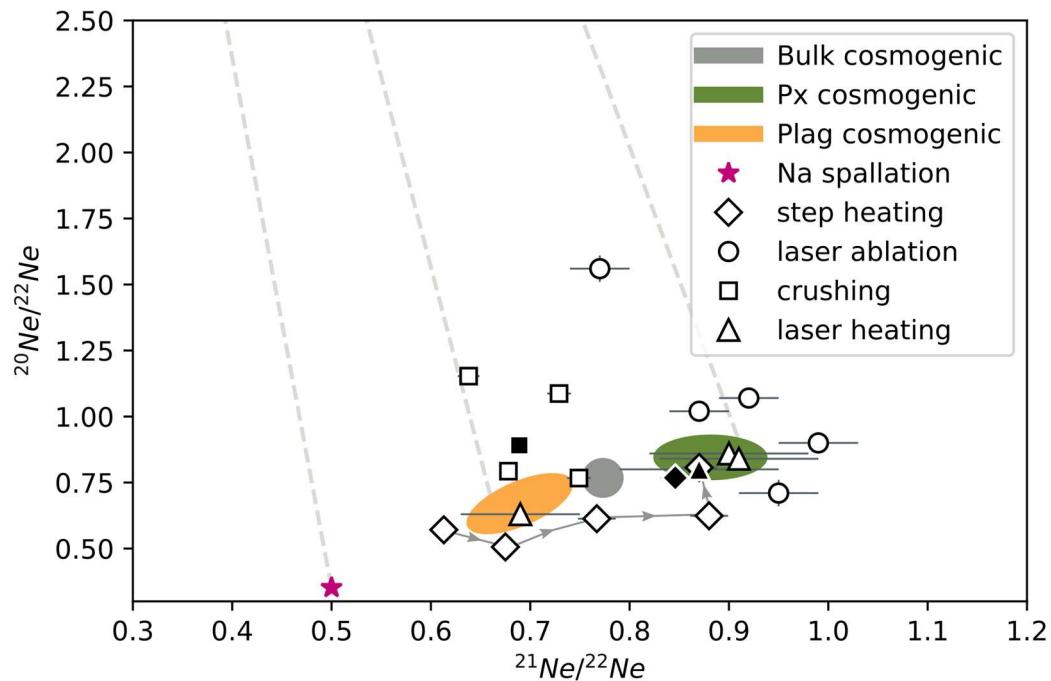
665 Srinivasan P., Dunlap D. R., Agee C. B., Wadhwa M., Coleff D., Ziegler K., Zeigler R. and McCubbin F.
666 M. (2018) Silica-rich volcanism in the early solar system dated at 4.565 Ga. *Nat Commun* **9**,
667 3036.

668 Takenouchi A., Sumino H., Yamaguchi A. and Barrat J. A. (2021) Noble Gas Chronology of Erg Chech
669 002 Ungrouped Achondrite. *84*, 6162.


670 Wieler R. (2002) Cosmic-Ray-Produced Noble Gases in Meteorites. *Reviews in Mineralogy and*
671 *Geochemistry* **47**, 125–170.

672 Zeitler P. K., Herczeg A. L., McDougall I. and Honda M. (1987) U-Th-He dating of apatite: A potential
673 thermochronometer. *Geochimica et Cosmochimica Acta* **51**, 2865–2868.

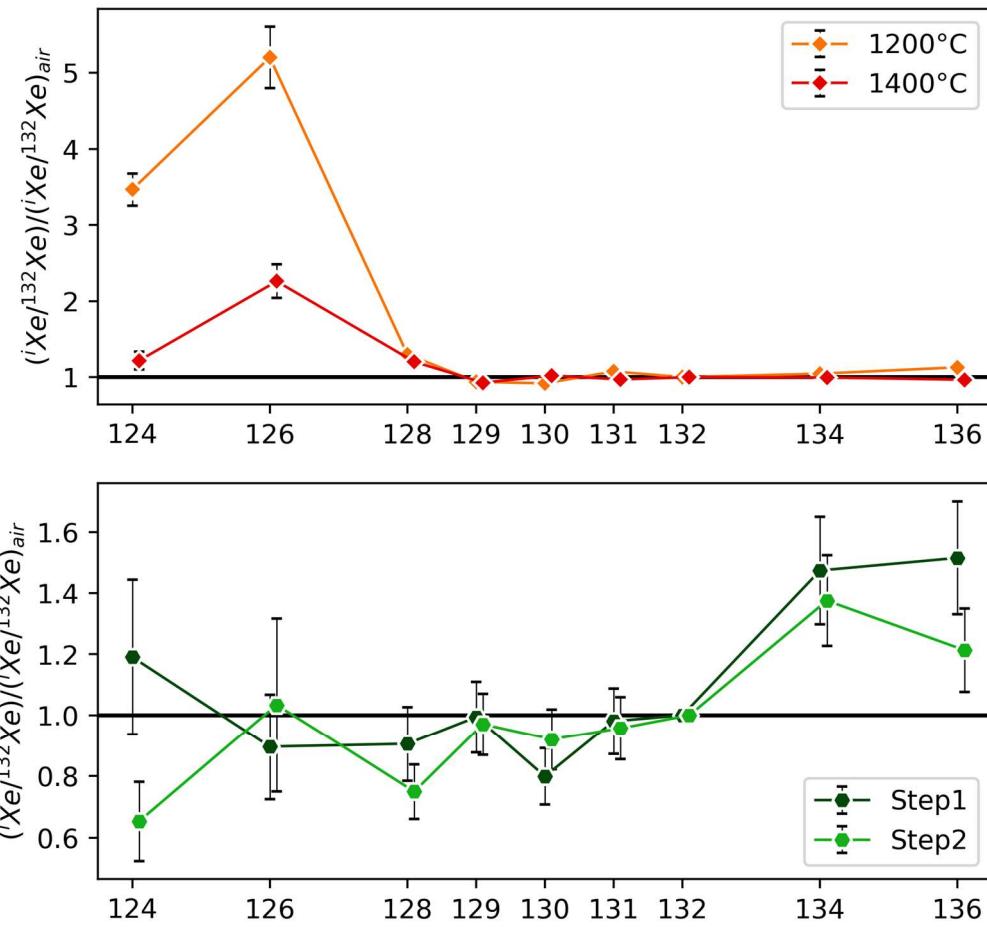
674 Ziegler J. F. (1980) Handbook of stopping cross-sections for energetic ions in all elements.


675

676

679 **Figure 1** - Isotope and abundance data for light noble gases released by step heating extraction from 8.3 mg
 680 sample. The amount of gas released at each step (in mol) is represented by bars, with values denoted on the
 681 left-hand axis (log scale). Isotope ratios for the corresponding element are overlain as connected points, with
 682 these values shown on the right hand axis. For neon, ${}^{21}\text{Ne}/{}^{22}\text{Ne}$ ratios are marked with diamonds, and

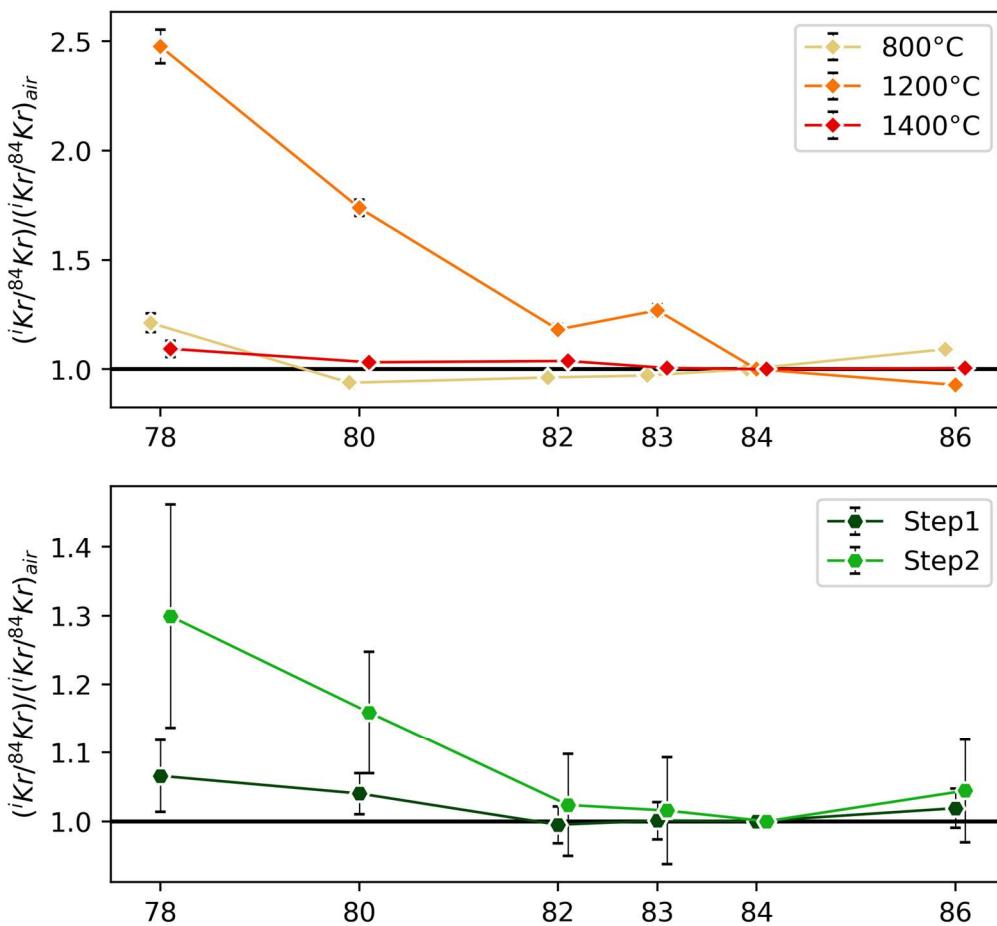
683 $^{20}\text{Ne}/^{22}\text{Ne}$ marked with circles. This shows that the majority of He was released during the 800°C heating step,
 684 whereas Ne and Ar were mostly released at the 1200°C step.



685

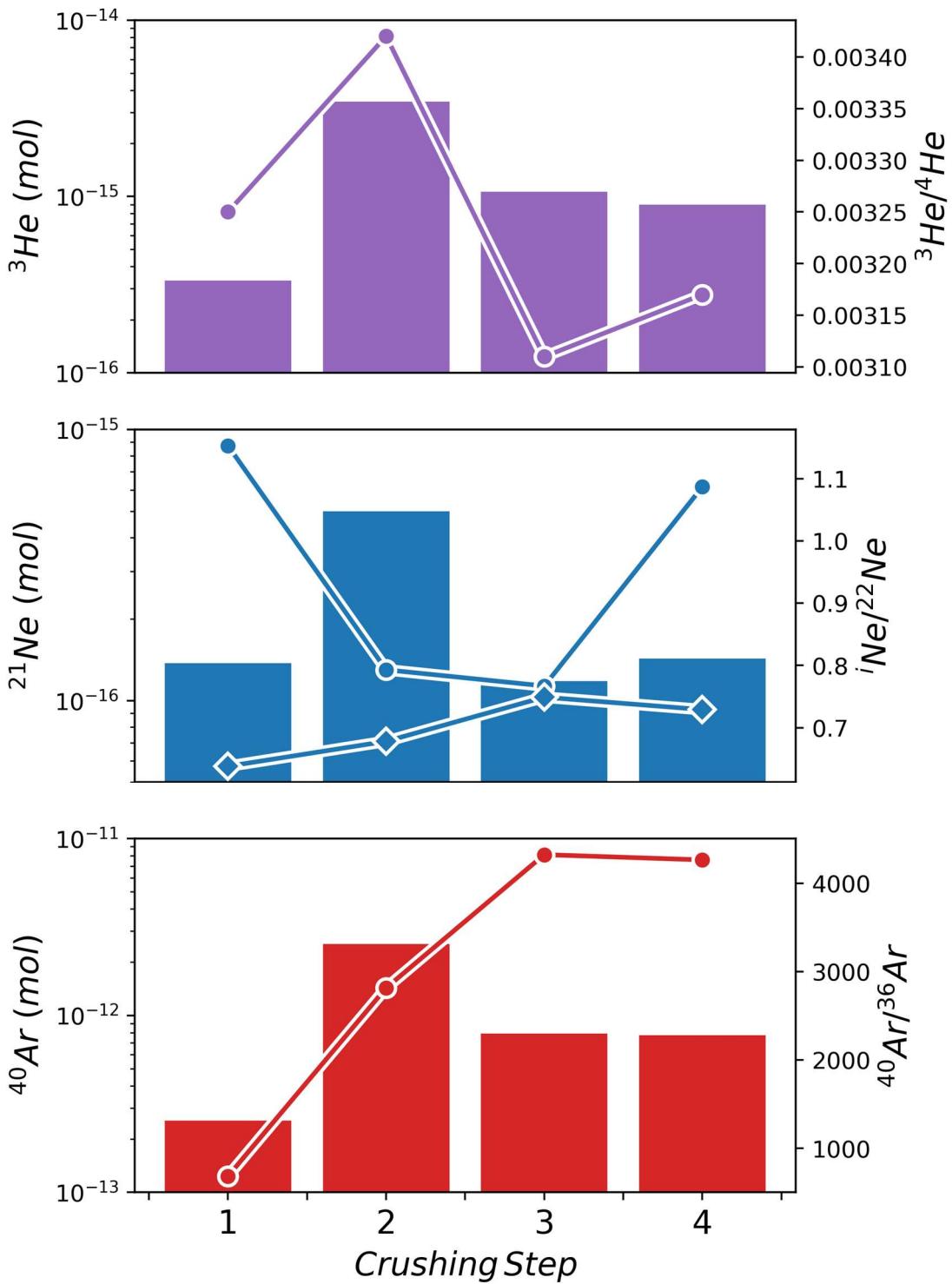
686 **Figure 2** - Neon isotope plot for Erg Chech 002 data using different extraction methods. Step heating, laser
 687 ablation, crushing and laser heating extractions are shown using diamond, circular, square and triangular
 688 markers respectively. Individual measurements are shown as unfilled markers, and bulk extraction values for
 689 step heating and crushing are shown as filled markers. All laser ablation analyses are from pyroxene grains as
 690 insufficient neon was released from the plagioclase analysis. Approximate galactic cosmic ray production
 691 endmembers are shown as shaded regions, determined over all shielding depths for a 20 cm radius asteroid
 692 for the bulk, px and plag composition of EC 002 respectively, after Leya and Masarik, 2009. Grey dashed lines
 693 show mixing with atmospheric neon. Other neon endmembers such as Ne-HL, Ne-B (implantation-fractionated
 694 solar wind) and phase Q are in approximately the same direction as atmosphere at this scale. Lower
 695 temperature heating steps plot towards the predicted production ratios of spallation on pure Na (Leya et al.,
 696 2000; Pravdivtseva et al., 2020). This may be due to the preferential release of neon from Na-rich sodic
 697 plagioclase phases at lower temperature steps. Conversely, laser ablation analyses, which were targeted
 698 within individual pyroxene phenocrysts, show higher $^{21}\text{Ne}/^{22}\text{Ne}$ than predicted bulk production, falling closer
 699 to expected production from pure pyroxene.

700


701

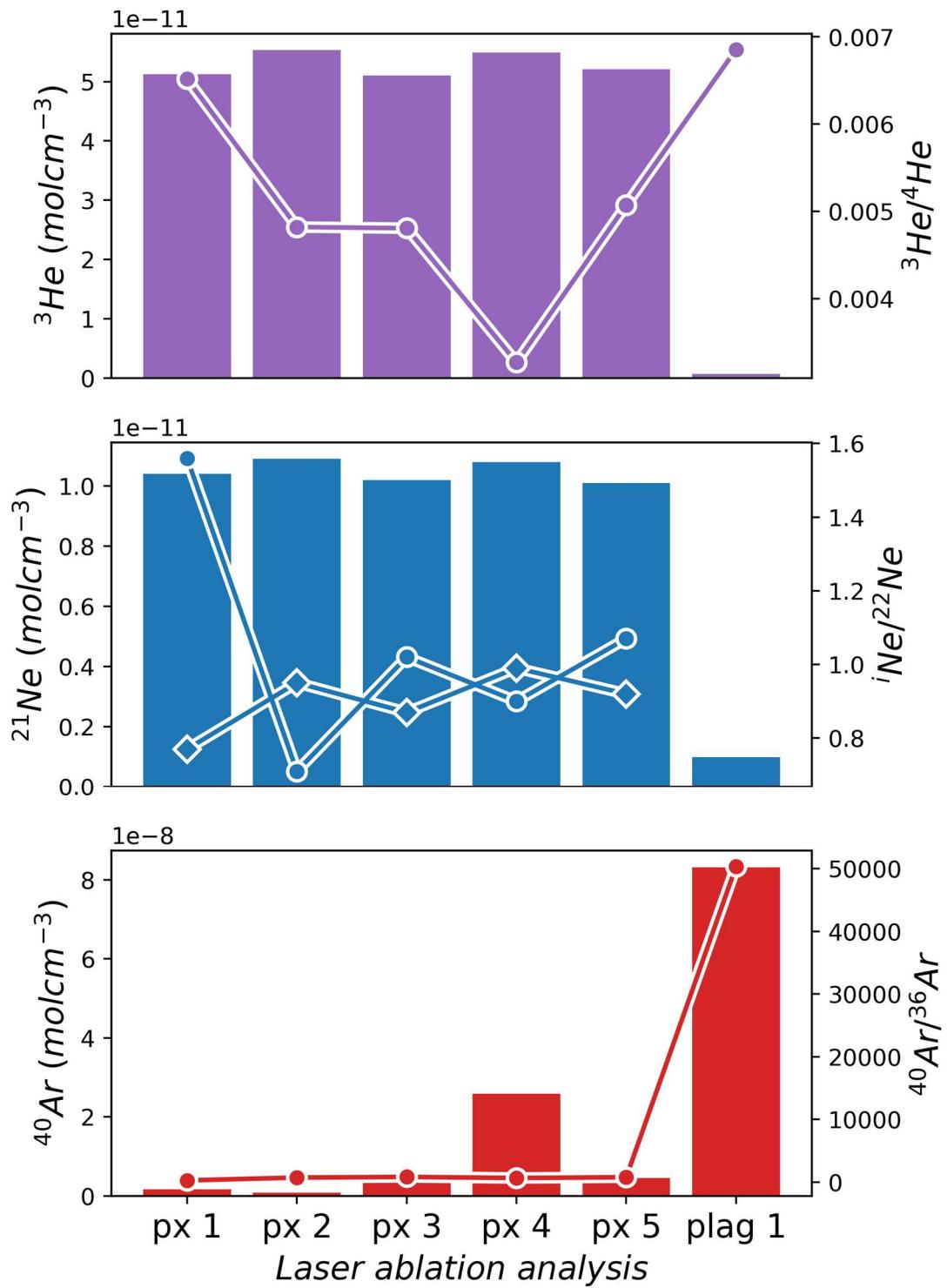
702

703 **Figure 3** - Xe isotope spectra for Erg Chech 002 gas released during step heating (top panel) and crushing
 704 (bottom panel). Isotope mass number is shown along the x-axis; values on the y-axis are normalised to ^{132}Xe
 705 and then to the atmospheric ratio. Step heating extractions at 1200°C and 1400°C show strong enrichments in
 706 cosmogenic ^{124}Xe and ^{126}Xe . Crushing steps 1 and 2 both show resolvable excesses in fissionogenic isotopes ^{134}Xe
 707 and ^{136}Xe .


708

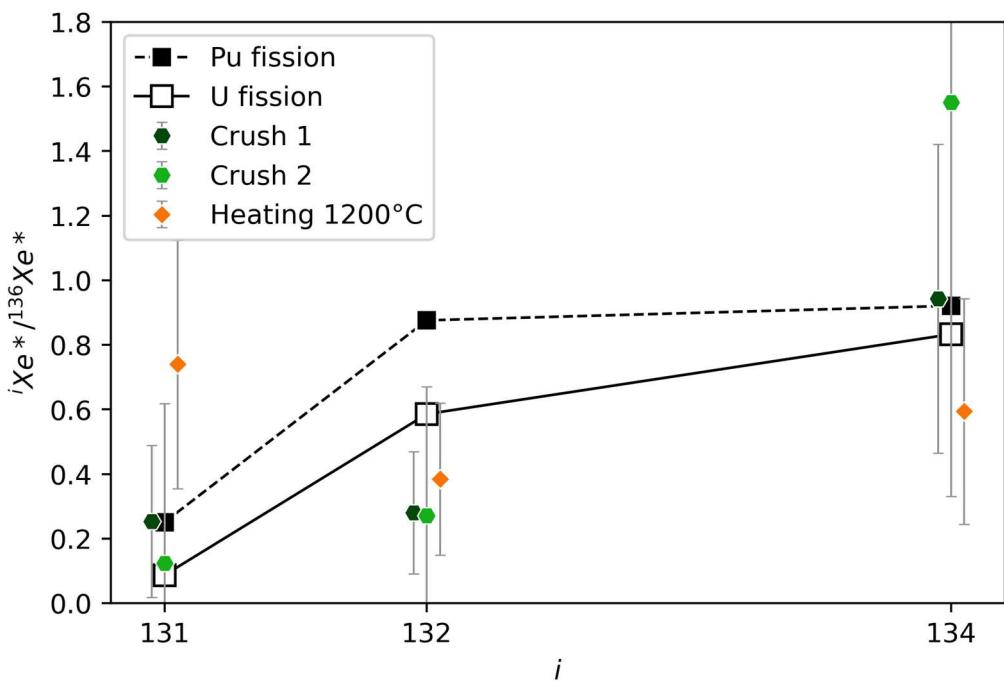
709

710 **Figure 4** - Kr isotope spectra for Erg Chech 002 gas released during step heating (top panel) and crushing
 711 (bottom panel). Isotope mass number is shown along the x-axis; values on the y-axis are normalised to ^{84}Kr and
 712 then to the atmospheric ratio. Cosmogenic excesses of light Kr isotopes are clearly visible in both the step
 713 heating and crushing results.


714

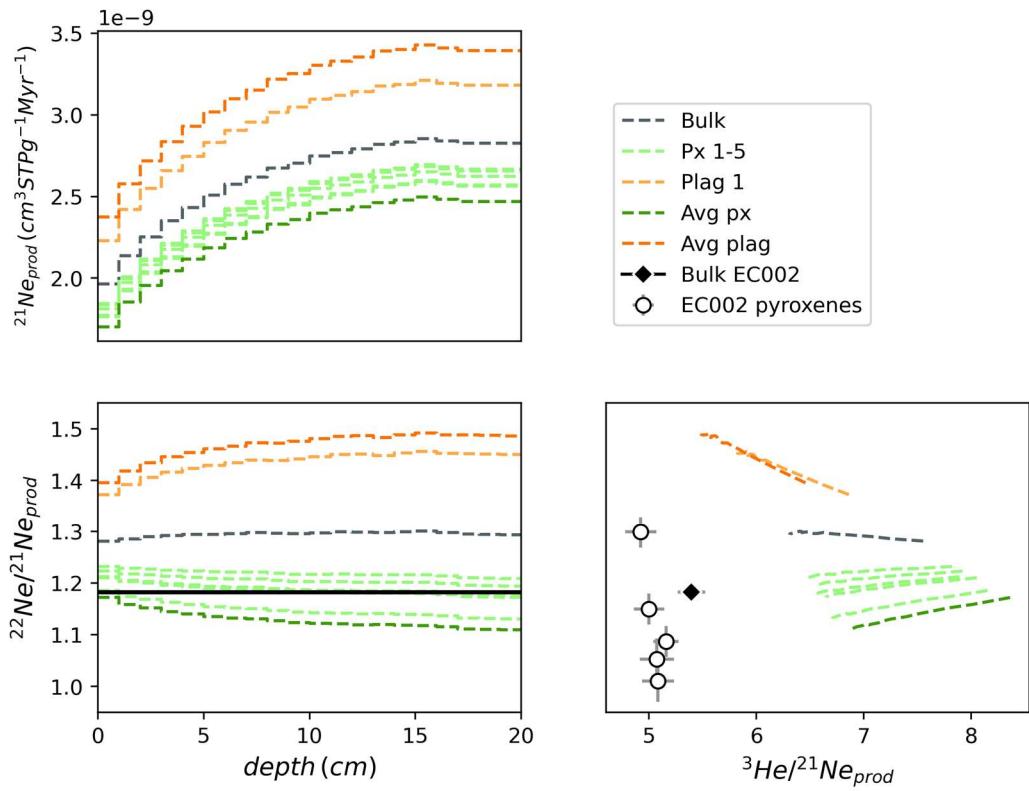
715

716 **Figure 5** - Isotope and abundance data for light noble gases released by crushing. The amount of gas released
 717 at each step (in mol) is represented by bars, with values denoted on the left hand axis (log scale). Isotope
 718 ratios for the corresponding element are overlaid as connected points, with these values shown on the right
 719 hand axis. For neon, ${}^{21}\text{Ne}/{}^{22}\text{Ne}$ ratios are marked with diamonds, and ${}^{20}\text{Ne}/{}^{22}\text{Ne}$ marked with circles.


720

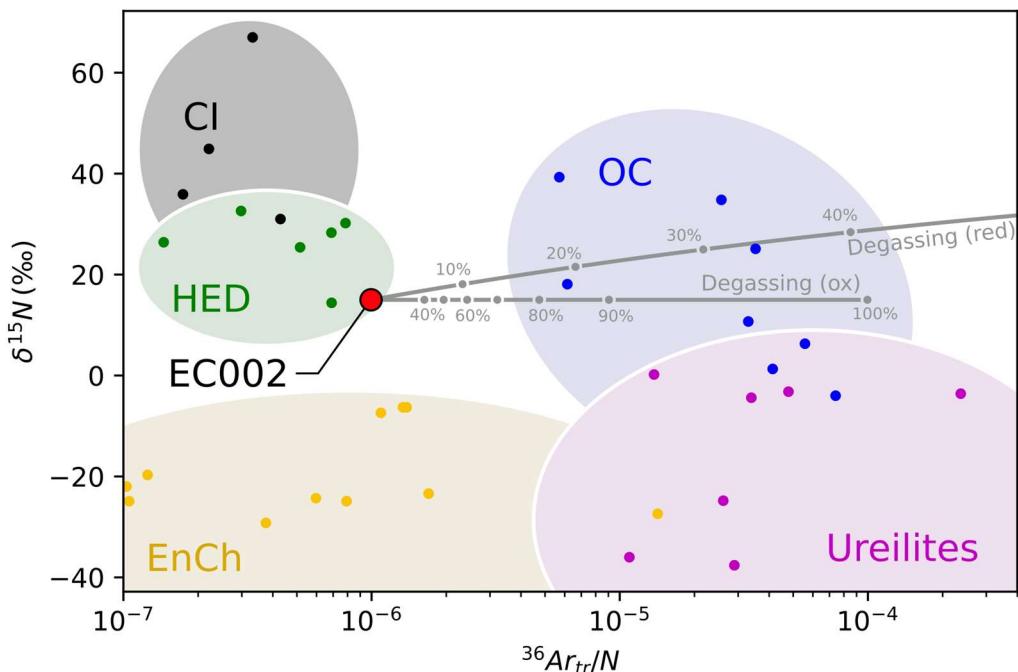
721

722 **Figure 6** - Isotope and abundance data for laser ablation analyses. The isotope abundance for each analysis site
 723 is represented as bars, with values denoted on the left hand axis (log scale). Isotope ratios for the
 724 corresponding element are overlain as connected points, with these values shown on the right hand axis. For
 725 neon, ${}^{21}\text{Ne}/{}^{22}\text{Ne}$ ratios are marked with diamonds, and ${}^{20}\text{Ne}/{}^{22}\text{Ne}$ marked with circles.


726

727

728 **Figure 7** - Fissiogenic Xe isotope data for selected sample steps that show distinguishable excesses. Excesses of
 729 each isotope are normalised to the observed excess of ^{136}Xe , and compared to the expected fissiogenic spectra
 730 of U and Pu.


731

732

733 **Figure 8** - Cosmogenic production rate models for EC 002 using bulk chemical composition, average pyroxene
 734 and plagioclase compositions as measured by Nicklas et al., 2022, and individual pyroxene and plagioclase
 735 compositions corresponding to our laser ablation analyses. Left hand panels show predicted ^{21}Ne and
 736 $^{21}\text{Ne}/^{22}\text{Ne}$ production with increasing depth within a 20cm radius meteoroid, with bulk EC 002 $^{22}\text{Ne}/^{21}\text{Ne}$
 737 shown as a solid black line. Right hand panel shows predicted $^{22}\text{Ne}/^{21}\text{Ne}$ vs $^3\text{He}/^{21}\text{Ne}$ curves alongside bulk EC
 738 002 composition and individual pyroxene compositions as measured by laser ablation.

739

740

741 **Figure 9** - Nitrogen isotope and $^{36}\text{Ar}_{\text{tr}}/\text{N}$ (^{36}Ar corrected for cosmogenic contribution) values for EC 002
 742 alongside literature values for selected meteorite classes: CI-group carbonaceous chondrites (CI), enstatite
 743 chondrites (EnCh), Howardite-Eucrite-Diogenites (HED), ordinary chondrites (OC), and Ureilites. All OC data
 744 shown are from specimens of petrographic type 3, being the least altered. Data are compiled from (Mazor et
 745 al., 1970; Kerridge, 1985; Hashizume and Sugiura, 1995; Grady et al., 2002; Nakamura et al., 2003; Rai et al.,
 746 2003; Rai et al., 2003; Mahajan et al., 2019). Grey lines show ranges of possible parent body compositions
 747 from which the EC 002 composition can be obtained by degassing under selected oxidising and reducing
 748 conditions as outlined in section 4.4. Annotated percentages denote the level of degassing which would be
 749 required for EC 002 having started from the relevant composition shown. Uncertainty for the EC 002 point is
 750 within the marker size.

751 **Table 1** - Light noble gas isotope ratios measured in Erg Chech 002 using step heating, crushing and laser ablation techniques. Laser ablation analyses Px1-5 targeted pyroxene
 752 grains whilst Plag1 targeted the plagioclase phase. Uncertainties shown are at the 1σ level. Results for step heating are reported in Barrat et al., 2021, and reproduced in
 753 Table S1 for reference.

754

	${}^3\text{He}/{}^4\text{He}$	\pm	${}^{20}\text{Ne}/{}^{22}\text{Ne}$	\pm	${}^{21}\text{Ne}/{}^{22}\text{Ne}$	\pm	${}^{40}\text{Ar}/{}^{36}\text{Ar}$	\pm	${}^{38}\text{Ar}/{}^{36}\text{Ar}$	\pm
<i>Crushing</i>										
Step 1	0.00325	0.00008	1.153	0.015	0.638	0.011	686	6	0.232	0.005
Step 2	0.00342	0.00006	0.793	0.006	0.678	0.009	2815	50	0.362	0.008
Step 3	0.00311	0.00006	0.767	0.010	0.749	0.012	4322	44	0.527	0.007
Step 4	0.00317	0.00007	1.087	0.013	0.729	0.012	4263	28	0.524	0.006
Total	0.00331	0.00006	0.866	0.007	0.692	0.009	3221	57	0.413	0.009
<i>Laser Ablation</i>										
Px1	0.00647	0.00069	1.56	0.05	0.77	0.03	260	9	1.17	0.05
Px2	0.00479	0.00015	0.71	0.05	0.95	0.04	709	94	4.55	0.60
Px3	0.00477	0.00021	1.02	0.03	0.87	0.03	811	20	1.46	0.04
Px4	0.00325	0.00009	0.90	0.04	0.99	0.04	644	21	0.42	0.01
Px5	0.00504	0.00011	1.07	0.04	0.92	0.03	766	19	1.52	0.04
Plag1	0.00681	0.00370			50400	3700			1.30	0.10

755

756

757 **Table 2** - Noble gas abundances for the three separate extraction techniques. Units are mol.g⁻¹ for step heating and crushing, and mol.cm⁻³ for laser ablation analyses.
 758 Uncertainties are given at the 1 σ level. He, Ne and Ar results for step heating are reported in Barrat et al., 2021, and reproduced in Table S2 for reference. Sample masses
 759 used for step heating and crushing are 8.3 mg and 185.2 mg respectively.

	³ He (x10 ⁻¹³)	\pm	²¹ Ne (x10 ⁻¹³)	\pm	⁴⁰ Ar (x10 ⁻¹⁰)	\pm	⁸⁴ Kr (x10 ⁻¹⁶)	\pm	¹³² Xe (x10 ⁻¹⁶)	\pm	⁴ He (x10 ⁻¹³)	\pm	²² Ne (x10 ⁻¹³)	\pm	³⁶ Ar (x10 ⁻¹⁵)	\pm
<i>Step Heating (mol.g⁻¹)</i>																
600 °C																
800 °C							29.8	1.1	12.1	1.2						
1000 °C																
1200 °C							86.0	2.7	5.3	0.6						
1400 °C							45.1	1.1	5.7	0.9						
Total							160.8	3.1	23.1	1.6						
<i>Crushing (mol.g⁻¹)</i>																
Step 1	0.018	0.001	0.00411	0.00019	0.0137	0.0001	1.02	0.06	0.025	0.012	5.5	0.3	0.0064	0.0003	2.00	0.02
Step 2	0.186	0.013	0.02310	0.00055	0.1365	0.0011	1.56	0.04	0.113	0.032	54.4	3.9	0.0341	0.0009	4.85	0.09
Step 3	0.057	0.004	0.00623	0.00017	0.0425	0.0003					18.3	1.3	0.0083	0.0003	0.98	0.01
Step 4	0.049	0.004	0.00518	0.00019	0.0416	0.0003					15.5	1.3	0.0071	0.0003	0.98	0.01
Total	0.310	0.015	0.03861	0.00064	0.2344	0.0011	2.59	0.07	0.138	0.034	93.7	4.8	0.0558	0.0012	7.28	0.13
<i>Laser Ablation (mol.cm⁻³)</i>																
Px1	512	9	104	2			16.9	1.0			79000	9000	135	6	6500	400
Px2	553	11	109	3			8.7	1.7			115000	4000	114	6	1200	300
Px3	510	10	102	2			46.2	1.9			107000	5000	117	5	5700	300
Px4	549	11	108	2			259	13			169000	6000	109	5	40000	2000
Px5	521	7	101	2			45.2	1.9			103000	3000	109	4	5900	300
Plag1	7	1	10	0.4			833	94			1000	600			1600	200

760

761

762

763

764 **Table 3** - Xe isotope ratios for step heating and crushing analyses for extractions where measurable amounts of Xe were released. ^{126}Xe was below detection limit (b.d.) for
 765 the 800°C step and so is not reported. Uncertainties are given at the 1σ level.

766

	$^{124}\text{Xe}/^{132}\text{Xe}$	\pm	$^{126}\text{Xe}/^{132}\text{Xe}$	\pm	$^{128}\text{Xe}/^{132}\text{Xe}$	\pm	$^{129}\text{Xe}/^{132}\text{Xe}$	\pm	$^{130}\text{Xe}/^{132}\text{Xe}$	\pm	$^{131}\text{Xe}/^{132}\text{Xe}$	\pm	$^{134}\text{Xe}/^{132}\text{Xe}$	\pm	$^{136}\text{Xe}/^{132}\text{Xe}$	\pm
<i>Step Heating</i>																
800 °C	0.00308	0.00018	b.d.		0.0687	0.0029	0.965	0.036	0.1425	0.0055	0.786	0.030	0.379	0.014	0.326	0.013
1200 °C	0.01226	0.00074	0.01716	0.00132	0.0928	0.0039	0.923	0.035	0.1391	0.0059	0.848	0.036	0.405	0.017	0.372	0.015
1400 °C	0.00431	0.00041	0.00746	0.00073	0.0858	0.0049	0.912	0.047	0.1544	0.0088	0.766	0.038	0.386	0.021	0.318	0.017
<i>Crushing</i>																
Step 1	0.00421	0.00090	0.00296	0.00056	0.0646	0.0086	0.977	0.114	0.1210	0.0139	0.774	0.085	0.572	0.068	0.499	0.061
Step 2	0.00231	0.00045	0.00341	0.00093	0.0535	0.0064	0.954	0.099	0.1393	0.0148	0.755	0.080	0.534	0.058	0.400	0.045

767

768

769 **Table 4** - Kr isotope ratios for step heating and crushing analyses for extractions where measurable amounts of Kr were released. Uncertainties are given at the 1σ level.

770

771

	$^{78}\text{Kr}/^{84}\text{Kr}$	\pm	$^{80}\text{Kr}/^{84}\text{Kr}$	\pm	$^{82}\text{Kr}/^{84}\text{Kr}$	\pm	$^{83}\text{Kr}/^{84}\text{Kr}$	\pm	$^{86}\text{Kr}/^{84}\text{Kr}$	\pm
<i>Step Heating</i>										
800 °C	0.00738	0.00026	0.0372	0.0009	0.1945	0.0045	0.1956	0.0045	0.333	0.007
1200 °C	0.01507	0.00046	0.0688	0.0015	0.2389	0.0052	0.2556	0.0055	0.283	0.006
1400 °C	0.00665	0.00022	0.0409	0.0008	0.2098	0.0036	0.2024	0.0033	0.307	0.005
<i>Crushing</i>										
Step 1	0.0065	0.0003	0.0412	0.0012	0.201	0.005	0.202	0.005	0.311	0.009
Step 2	0.0079	0.0010	0.0459	0.0035	0.207	0.015	0.204	0.016	0.319	0.023

772
773
774
775
776
777
778
779

Table 5 - Nitrogen, neon and argon isotopic compositions and abundances for Erg Chech 002, measured via laser heating extraction. Abundances are all reported in mol.g⁻¹, and $\delta^{15}\text{N}$ is reported in permille relative to atmosphere.

	^{21}Ne (x10 ⁻¹³)	\pm	^{40}Ar (x10 ⁻¹⁰)	\pm	N (x10 ⁻⁷)	\pm	$^{20}\text{Ne}/^{22}\text{Ne}$	\pm	$^{21}\text{Ne}/^{22}\text{Ne}$	\pm	$^{40}\text{Ar}/^{36}\text{Ar}$	\pm	$^{38}\text{Ar}/^{36}\text{Ar}$	\pm	$\delta^{15}\text{N}$ (‰)	\pm
<i>(mol.g⁻¹)</i>																
Step 1	3.0	0.4	11.3	0.8	1.11	0.04	0.631	0.034	0.693	0.064	19883	1243	0.72	0.03	0.9	0.5
Step 2	3.4	0.4	30.7	1.7	1.66	0.06	0.859	0.042	0.904	0.082	42808	2130	1.58	0.11	5.5	0.5
Step 3	13.9	1.5	41.7	0.7	1.04	0.04	0.837	0.030	0.906	0.080	5263	25	1.55	0.02	45.0	0.6
Bulk	20.3	1.6	83.8	2.0	3.82	0.08	0.802	0.044	0.866	0.077	9088	251	1.50	0.04	15.0	0.5

780
781
782
783
784

Table 6 – Deconvolution of the ^{38}Ar and ^{36}Ar composition of EC002 from the sample fragments used for stepped heating and laser heating, into cosmogenic and trapped components. $F^{36}\text{Ar}$ is the fraction of ^{36}Ar in the total ($^{38}\text{Ar} + ^{36}\text{Ar}$), calculated from $^{38}\text{Ar}/^{36}\text{Ar}$ by the relationship $F^{36}\text{Ar} = (1 + ^{38}\text{Ar}/^{36}\text{Ar})^{-1}$, and f_{cos} is the fraction of cosmogenic ($^{38}\text{Ar} + ^{36}\text{Ar}$) within the total, calculated from $F^{36}\text{Ar}_{\text{sample}} = F^{36}\text{Ar}_{\text{cos}}f_{\text{cos}} + F^{36}\text{Ar}_{\text{tr}}(1 - f_{\text{cos}})$.

	$^{38}\text{Ar}/^{36}\text{Ar}$	$F^{36}\text{Ar}$	f_{cos}	$[^{36}\text{Ar}] \text{ mol.g}^{-1}$			$[^{38}\text{Ar}] \text{ mol.g}^{-1}$		
				<i>total</i>	<i>cos</i>	<i>tr</i>	<i>total</i>	<i>cos</i>	<i>tr</i>
Endmembers									
Cosmogenic	1.7	0.37							
Trapped	0.188	0.84							
EC002 samples									
Stepped heating	1.17	0.46	0.81	1.99×10^{-12}	1.29×10^{-12}	6.98×10^{-13}	2.33×10^{-12}	2.20×10^{-12}	1.31×10^{-12}
Laser heating	1.50	0.40	0.94	9.22×10^{-13}	8.02×10^{-13}	1.19×10^{-13}	1.39×10^{-12}	1.36×10^{-12}	2.24×10^{-14}

785
786
787
788
789

Supplementary material 1 – Light noble gas isotope and abundance data, compiled from Barrat et al., 2021

	${}^3\text{He}/{}^4\text{He}$	\pm	${}^{20}\text{Ne}/{}^{22}\text{Ne}$	\pm	${}^{21}\text{Ne}/{}^{22}\text{Ne}$	\pm	${}^{40}\text{Ar}/{}^{36}\text{Ar}$	\pm	${}^{38}\text{Ar}/{}^{36}\text{Ar}$	\pm
<i>Step Heating</i>										
600 °C	0.00871	0.00007	0.571	0.003	0.613	0.013	1027	14	0.215	0.006
800 °C	0.00741	0.00007	0.506	0.003	0.675	0.014	19702	178	0.791	0.011
1000 °C	0.00601	0.00007	0.624	0.004	0.880	0.019	25097	237	0.997	0.014
1200 °C	0.00448	0.00003	0.807	0.003	0.870	0.018	4699	33	1.218	0.016
1400 °C	0.00105	0.00011	0.613	0.014	0.767	0.019	493	4	0.395	0.005
Total	0.00731	0.00007	0.768	0.002	0.846	0.015	5523	42	1.17	0.015

790
791
792
793

Table S1 –

	${}^3\text{He}$ ($\times 10^{-13}$)	\pm	${}^{21}\text{Ne}$ ($\times 10^{-13}$)	\pm	${}^{40}\text{Ar}$ ($\times 10^{-10}$)	\pm
<i>Step Heating (mol.g⁻¹)</i>						
600 °C	4.12	0.28	0.817	0.038	0.18	0.01
800 °C	85.6	5.8	1.088	0.050	17.3	0.6
1000 °C	1.05	0.07	0.844	0.039	13.9	0.5
1200 °C	4.77	0.32	14.849	0.681	77.9	2.4
1400 °C	0.007	0.001	0.093	0.004	0.95	0.03
Total	95.5	5.8	17.700	0.685	110.0	2.5

794
795

Table S2 – Sample masses used for step heating and crushing are 8.3 mg and 185.2 mg respectively.

797

798

799

Cut text

800

801

802

803

Bulk abundances and isotope ratios were calculated using an abundance-weighted average. As shown in Fig. 1, the majority of He was released at the 800°C step, whilst Ne and Ar were predominantly released at 1200°C. This is likely a result of the greater mobility of He at lower temperatures, but may also be due to differential siting of distinct noble gas components within different mineral phases.

804 Bulk ${}^3\text{He}/{}^4\text{He}$ is 0.00731 ± 0.00007 , which indicates a large contribution of cosmogenic ${}^3\text{He}$. Bulk Ne isotopes are also strongly cosmogenic, with ${}^{20}\text{Ne}/{}^{22}\text{Ne} = 0.768 \pm$
805 0.002 and ${}^{21}\text{Ne}/{}^{22}\text{Ne} = 0.846 \pm 0.015$, within the range of expected cosmogenic production ratios for stony meteorites (Eugster & Michel, 1995). There is however a notable
806 variation in the Ne isotopic composition with different temperature releases: low temperature steps 600°C and 800°C show significantly lower ${}^{20}\text{Ne}/{}^{22}\text{Ne}$ and ${}^{21}\text{Ne}/{}^{22}\text{Ne}$ than
807 the major Ne release step at 1200°C . This likely reflects the different cosmogenic production ratios between different mineral phases (as shown in Fig. 2 and discussed in
808 section 4.2.2). Bulk Ar isotopes are strongly enriched in radiogenic ${}^{40}\text{Ar}$ (produced by decay of ${}^{40}\text{K}$), with ${}^{40}\text{Ar}/{}^{36}\text{Ar} = 5523 \pm 42$. Minor releases of Ar at the 800°C and 1000°C
809 temperature steps show even higher ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ of $19,702 \pm 178$ and $25,097 \pm 237$, respectively, which is likely a result of preferential Ar release from the K-enriched feldspar
810 minerals at lower temperatures, suggesting that the ${}^{40}\text{Ar}/{}^{36}\text{Ar}$ of the sample is strongly heterogeneous and dependent on the host mineral composition. Bulk measured
811 ${}^{38}\text{Ar}/{}^{36}\text{Ar}$ is close to expected cosmogenic values at 1.17 ± 0.015 , but again shows significant variability between extraction steps (Table 1). Bulk abundances of ${}^3\text{He}$, ${}^{20}\text{Ne}$ and
812 ${}^{40}\text{Ar}$ are $95.50 \pm 5.77 \times 10^{-13} \text{ mol.g}^{-1}$, $16.05 \pm 0.69 \times 10^{-13} \text{ mol.g}^{-1}$, and $110.00 \pm 2.53 \times 10^{-10} \text{ mol.g}^{-1}$ respectively.

813
814

815
816